Abstract
In this paper, we apply a Runge-Kutta method for solving first order fuzzy differential equations using lower number of function evaluations in comparison with classical Runge-Kutta method. It is assumed that the user will evaluate both f and f ′ readily instead of the evaluations of f only when solving hybrid fuzzy differential equation which enhance the order of accuracy of the solutions. Numerical example is provided which compares the new results with previous findings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbod, M.F., Von Keyserlingk, D.G., Linkens, D.A., Mahfouf, M.: Survey of utilisation of fuzzy technology in medicine and healthcare. Fuzzy Set Syst. 120, 331–349 (2001)
Allahviranloo, T., Ahmady, N., Ahmady, E.: Numerical solution of fuzzy differential equations by predictor-corrector method. Information Sciences 177, 1633–1647 (2007)
Allahviranloo, T., Salahshour, S.: Euler method for solving hybrid fuzzy differential equation. Soft Comput. J. 15, 1247–1253 (2011)
Barro, S., Marn, R.: Fuzzy logic in medicine. Physica-Verlag, Heidelberg (2002)
Bede, B.: Note on ”Numerical solutions of fuzzy differential equations by predictor corrector method”. Information Sciences 178, 1917–1922 (2008)
Casasnovas, J., Rossell, F.: Averaging fuzzy biopolymers. Fuzzy Set Syst. 152, 139–158 (2005)
Chang, B.C., Halgamuge, S.K.: Protein motif extraction with neuro-fuzzy optimization. Bioinformatics 18, 1084–1090 (2002)
Dubios, D., Prade, H.: Towards fuzzy differential calculus-part3. Fuzzy Sets and Systems 8, 225–234 (1982)
Enright, W.H.: Second derivative multi-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)
Feng, G., Chen, G.: Adaptative control of discrete-time chaotic systems: a fuzzy control approach. Chaos, Solitons & Fractals 23, 459–467 (2005)
Goeken, D., Johnson, O.: Runge-Kutta with higher derivative approximations. Appl. Numer. Math. 39, 249–257 (2000)
Jiang, W., Guo-Dong, Q., Bin, D.: H ∞ variable universe adaptative fuzzy control for chaotic systems. Chaos, Solitons Fractals 24, 1075–1086 (2005)
Kima, H., Sakthivel, R.: Numerical solution of hybrid fuzzy differential equations using improved predictorcorrector method. Commun. Nonlinear Sci. Numer. Simulat. 17, 3788–3794 (2012)
Kaleva, O.: Fuzzy differential equations. Fuzzy Sets and Systems 24, 301–317 (1987)
Kloeden, P.: Remarks on Peano-like theorems for fuzzy differential equations. Fuzzy Set Syst. 44, 161–164 (1991)
Ma, M., Friedman, M., Kandel, A.: Numerical solution of fuzzy differential equations. Fuzzy Sets Syst. 105, 133–138 (1999)
Palligkinis, S.C., Papageorgiou, G., Famelis, I.T.: Runge-Kutta methods for fuzzy differential equations. Appl. Math. Comput. 209, 97–105 (2009)
Pederson, S., Sambandham, M.: Numerical solution of hybrid fuzzy differential equation IVPs by a characterization theorem. Information Sciences 179, 319–328 (2009)
Pederson, S., Sambandham, M.: The Runge-Kutta method for hybrid fuzzy differential equations. Nonlinear Anal. Hybrid Syst. 2, 626–634 (2008)
Pederson, S., Sambandham, M.: Numerical solution to hybrid fuzzy systems. Mathematical and Computer Modelling 45, 1133–1144 (2007)
Prakash, P., Kalaiselvi, V.: Numerical solution of hybrid fuzzy differential equations by predictor-corrector method. Int. J. Comput. Math. 86, 121–134 (2009)
Puri, M.L., Ralescu, D.: Differential for fuzzy function. J. Math. Anal. Appl. 91, 552–558 (1983)
Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comp. J. 5, 329–330 (1963)
Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simulat. 17, 1372–1381 (2012)
Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets and Systems 24, 319–330 (1987)
Zhang, H., Liao, X., Yu, J.: Fuzzy modeling and synchronization of hyperchaotic systems. Chaos, Solitons & Fractals 26, 835–843 (2005)
Wu, C., Song, S., Stanley Lee, E.: Approximate solution, existence and uniqueness of the Cauchy problem of fuzzy differential equations. J. Math. Anal. Appl. 202, 629–644 (1996)
Xu, J., Liao, Z., Hu, Z.: A class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Syst. 158, 2339–2358 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ahmadian, A., Suleiman, M., Ismail, F., Salahshour, S., Ghaemi, F. (2013). A Runge-Kutta Method with Lower Function Evaluations for Solving Hybrid Fuzzy Differential Equations. In: Selamat, A., Nguyen, N.T., Haron, H. (eds) Intelligent Information and Database Systems. ACIIDS 2013. Lecture Notes in Computer Science(), vol 7802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36546-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-36546-1_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36545-4
Online ISBN: 978-3-642-36546-1
eBook Packages: Computer ScienceComputer Science (R0)