Skip to main content

A Runge-Kutta Method with Lower Function Evaluations for Solving Hybrid Fuzzy Differential Equations

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7802))

Included in the following conference series:

Abstract

In this paper, we apply a Runge-Kutta method for solving first order fuzzy differential equations using lower number of function evaluations in comparison with classical Runge-Kutta method. It is assumed that the user will evaluate both f and f readily instead of the evaluations of f only when solving hybrid fuzzy differential equation which enhance the order of accuracy of the solutions. Numerical example is provided which compares the new results with previous findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbod, M.F., Von Keyserlingk, D.G., Linkens, D.A., Mahfouf, M.: Survey of utilisation of fuzzy technology in medicine and healthcare. Fuzzy Set Syst. 120, 331–349 (2001)

    Article  Google Scholar 

  2. Allahviranloo, T., Ahmady, N., Ahmady, E.: Numerical solution of fuzzy differential equations by predictor-corrector method. Information Sciences 177, 1633–1647 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allahviranloo, T., Salahshour, S.: Euler method for solving hybrid fuzzy differential equation. Soft Comput. J. 15, 1247–1253 (2011)

    Article  MATH  Google Scholar 

  4. Barro, S., Marn, R.: Fuzzy logic in medicine. Physica-Verlag, Heidelberg (2002)

    Book  MATH  Google Scholar 

  5. Bede, B.: Note on ”Numerical solutions of fuzzy differential equations by predictor corrector method”. Information Sciences 178, 1917–1922 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casasnovas, J., Rossell, F.: Averaging fuzzy biopolymers. Fuzzy Set Syst. 152, 139–158 (2005)

    Article  MATH  Google Scholar 

  7. Chang, B.C., Halgamuge, S.K.: Protein motif extraction with neuro-fuzzy optimization. Bioinformatics 18, 1084–1090 (2002)

    Article  Google Scholar 

  8. Dubios, D., Prade, H.: Towards fuzzy differential calculus-part3. Fuzzy Sets and Systems 8, 225–234 (1982)

    Article  MathSciNet  Google Scholar 

  9. Enright, W.H.: Second derivative multi-step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, G., Chen, G.: Adaptative control of discrete-time chaotic systems: a fuzzy control approach. Chaos, Solitons & Fractals 23, 459–467 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goeken, D., Johnson, O.: Runge-Kutta with higher derivative approximations. Appl. Numer. Math. 39, 249–257 (2000)

    MathSciNet  Google Scholar 

  12. Jiang, W., Guo-Dong, Q., Bin, D.: H  ∞  variable universe adaptative fuzzy control for chaotic systems. Chaos, Solitons Fractals 24, 1075–1086 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kima, H., Sakthivel, R.: Numerical solution of hybrid fuzzy differential equations using improved predictorcorrector method. Commun. Nonlinear Sci. Numer. Simulat. 17, 3788–3794 (2012)

    Article  Google Scholar 

  14. Kaleva, O.: Fuzzy differential equations. Fuzzy Sets and Systems 24, 301–317 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kloeden, P.: Remarks on Peano-like theorems for fuzzy differential equations. Fuzzy Set Syst. 44, 161–164 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, M., Friedman, M., Kandel, A.: Numerical solution of fuzzy differential equations. Fuzzy Sets Syst. 105, 133–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Palligkinis, S.C., Papageorgiou, G., Famelis, I.T.: Runge-Kutta methods for fuzzy differential equations. Appl. Math. Comput. 209, 97–105 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pederson, S., Sambandham, M.: Numerical solution of hybrid fuzzy differential equation IVPs by a characterization theorem. Information Sciences 179, 319–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pederson, S., Sambandham, M.: The Runge-Kutta method for hybrid fuzzy differential equations. Nonlinear Anal. Hybrid Syst. 2, 626–634 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pederson, S., Sambandham, M.: Numerical solution to hybrid fuzzy systems. Mathematical and Computer Modelling 45, 1133–1144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prakash, P., Kalaiselvi, V.: Numerical solution of hybrid fuzzy differential equations by predictor-corrector method. Int. J. Comput. Math. 86, 121–134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Puri, M.L., Ralescu, D.: Differential for fuzzy function. J. Math. Anal. Appl. 91, 552–558 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comp. J. 5, 329–330 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  24. Salahshour, S., Allahviranloo, T., Abbasbandy, S.: Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simulat. 17, 1372–1381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Seikkala, S.: On the fuzzy initial value problem. Fuzzy Sets and Systems 24, 319–330 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, H., Liao, X., Yu, J.: Fuzzy modeling and synchronization of hyperchaotic systems. Chaos, Solitons & Fractals 26, 835–843 (2005)

    Article  MATH  Google Scholar 

  27. Wu, C., Song, S., Stanley Lee, E.: Approximate solution, existence and uniqueness of the Cauchy problem of fuzzy differential equations. J. Math. Anal. Appl. 202, 629–644 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J., Liao, Z., Hu, Z.: A class of linear differential dynamical systems with fuzzy initial condition. Fuzzy Sets Syst. 158, 2339–2358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahmadian, A., Suleiman, M., Ismail, F., Salahshour, S., Ghaemi, F. (2013). A Runge-Kutta Method with Lower Function Evaluations for Solving Hybrid Fuzzy Differential Equations. In: Selamat, A., Nguyen, N.T., Haron, H. (eds) Intelligent Information and Database Systems. ACIIDS 2013. Lecture Notes in Computer Science(), vol 7802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36546-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36546-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36545-4

  • Online ISBN: 978-3-642-36546-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics