Skip to main content

Atlas-Based Whole-Body PET-CT Segmentation Using a Passive Contour Distance

  • Conference paper
Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging (MCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7766))

Included in the following conference series:

  • 1756 Accesses

Abstract

In positron emission tomography (PET) imaging, the segmentation of organs is necessary for many quantitative image analysis tasks, e.g., estimation of individual organ concentration or partial volume correction. To this end we present a fully automated approach for wholebody segmentation which enables large-scale and reproducible studies. The approach is based on joint segmentation and atlas registration. The classical active contour approach by Chan and Vese is modified to a novel passive contour energy term with implicitly incorporated information about shape and location of the organs. This new energy is added to a registration functional which is based on both functional (PET) and morphological (CT) data. The proposed method is applied to medical data, given by 13 PET-CT data sets of mice, and quantitatively compared to manually drawn VOIs. An average Dice coefficient of 0.73 ± 0.10 for the left ventricle, 0.88 ± 0.05 for the bladder, and 0.76 ± 0.07 for the kidneys shows the high accuracy of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baiker, M., Staring, M., Löwik, C.W.G.M., Reiber, J.H.C., Lelieveldt, B.P.F.: Automated Registration of Whole-Body Follow-Up MicroCT Data of Mice. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 516–523. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Chan, T., Vese, L.: Active contours without edges. IEEE Trans Image Process 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  3. Chan, T., Vese, L.: Active contour and segmentation models using geometric PDE’s for medical imaging. In: Malladi, R. (ed.) Geometric Methods in Bio-Medical Image Processing: Mathematics and Visualization, pp. 63–75. Springer (2002)

    Google Scholar 

  4. Dogdas, B., Stout, D., Chatziioannou, A., Leahy, R.: Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Physics Med. Biol. 52(3), 577 (2007)

    Article  Google Scholar 

  5. Gigengack, F., Ruthotto, L., Burger, M., Wolters, C., Jiang, X., Schäfers, K.: Motion correction in dual gated cardiac PET using mass-preserving image registration. IEEE Trans. Med. Imag. 31(3), 698–712 (2012)

    Article  Google Scholar 

  6. Hugenberg, V., Breyholz, H.J., Riemann, B., Hermann, S., Schober, O., Schäfers, M., Gangadharmath, U., Mocharla, V., Kolb, H., Walsh, J., Zhang, W., Kopka, K., Wagner, S.: A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates (radio)synthesis, in vitro and first in vivo evaluation. J. Med. Chem. 55(10), 4714–4727 (2012)

    Article  Google Scholar 

  7. Kösters, T., Schäfers, K., Wübbeling, F.: EMrecon: An expectation maximization based image reconstruction framework for emission tomography data. In: NSS/MIC Conference Record. IEEE (2011)

    Google Scholar 

  8. Erdt, M., Steger, S., Sakas, G.: Regmentation: A new view of image segmentation and registration. Journal of Radiation Oncology Informatics, 1–23 (2012)

    Google Scholar 

  9. Massoud, T., Gambhir, S.: Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17(5), 545–580 (2003)

    Article  Google Scholar 

  10. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  11. Sawatzky, A., Tenbrinck, D., Jiang, X., Burger, M.: A variational framework for region-based segmentation incorporating physical noise models. CAM Report 11-81, UCLA (December 2011)

    Google Scholar 

  12. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  13. Wang, H., Olafsen, T., Stout, D., Chatziioannou, A.: Quantification of organ uptake from small animal PET images via registration with a statistical mouse atlas. In: MICCAI Workshop Proceedings (2011)

    Google Scholar 

  14. Yezzi, A., Zöllei, L., Kapur, T.: A variational framework for integrating segmentation and registration through active contours. Med. Image Anal. 7(2), 171–185 (2003)

    Article  Google Scholar 

  15. Zaidi, H., Ruest, T., Schoenahl, F., Montandon, M.: Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage 32(4), 1591–1607 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gigengack, F. et al. (2013). Atlas-Based Whole-Body PET-CT Segmentation Using a Passive Contour Distance. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2012. Lecture Notes in Computer Science, vol 7766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36620-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36620-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36619-2

  • Online ISBN: 978-3-642-36620-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics