Abstract
Bioinformatics or computational biology is a multidisciplinary research area that combines molecular biology, computer science, and mathematics. Its aims are to organize, utilize and explore the vast amount of information obtained from biological experiments for understanding the relationships and useful patterns in data. Bioinformatics problems, such as protein structure prediction and sequence alignments, are commonly categorized as non-deterministic polynomial problems, and require sophisticated algorithms and powerful computational resources. Artificial Intelligence (AI) techniques have a proven track record in the development of many research areas in the applied sciences. Among the AI techniques, artificial neural networks (ANNs) and their variations have proven to be one of the more powerful tools in terms of their generalization and pattern recognition capabilities. In this chapter, we review a number of bioinformatics problems solved by different artificial neural network architectures.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adamczak, R., Porollo, A., Meller, J.: Accurate prediction of solvent accessibility using neural networks-based regression. Proteins: Structure, Function, and Bioinformatics 56(4), 753–767 (2004)
Ahmad, S., Gromiha, M.M., Sarai, A.: Real value prediction of solvent accessibility from amino acid sequence. Proteins: Structure, Function, and Bioinformatics 50(4), 629–635 (2003)
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)
Arrigo, P., Giuliano, F., Scalia, F., Rapallo, A., Damiani, G.: Identification of a new motif on nucleic acid sequence data using Kohonen’s self-organizing map. Computer Applications in the Biosciences: CABIOS 7(3), 353 (1991)
Auray, J.P., Duru, G., Zighed, D.A.: Analyse des données multidimensionnelles: Les Méthodes de structuration. A. Lacassagne (1990)
Bai, B., Kremer, S.C.: In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine Workshops (2011) (to appear)
Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., Soda, G.: Bidirectional dynamics for protein secondary structure prediction. Sequence Learning, 80–104 (2001)
Ball, G., Mian, S., Holding, F., Allibone, R.O., Lowe, J., Ali, S., Li, G., McCardle, S., Ellis, I.O., Creaser, C., et al.: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18(3), 395–404 (2002)
Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F.: et al. The protein data bank: A computer-based archival file for macromolecular structures. Journal of Molecular Biology 112(3), 535–542 (1977)
Bland, C., Newsome, A., Markovets, A.: Promoter prediction in e. coli based on SIDD profiles and artificial neural networks. BMC Bioinformatics 11(suppl. 6), S17 (2010)
Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R., Klug, A.: Protein disk of tobacco mosaic virus at 2.8 a resolution showing the interactions within and between subunits. Nature 276(5686), 362 (1978)
Brunak, S., Engelbrecht, J., Knudsen, S.: Prediction of human mRNA donor and acceptor sites from the DNA sequence. Journal of Molecular Biology 220(1), 49–65 (1991)
Cheng, J., Baldi, P.: Three-stage prediction of protein-sheets by neural networks, alignments and graph algorithms. Bioinformatics 21(suppl. 1), i75–i84 (2005)
Cherkassky, V., Vassilas, N.: Performance of back propagation networks for associative database retrieval. In: International Joint Conference on Neural Networks, IJCNN, pp. 77–84. IEEE (1989)
Cheung, M., Fogel, G.B.: Identification of functional RNA genes using evolved neural networks. In: Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2005, pp. 1–7. IEEE (2005)
Choe, W., Ersoy, O.K., Bina, M.: Neural network schemes for detecting rare events in human genomic DNA. Bioinformatics 16(12), 1062–1072 (2000)
Cox, D.R., Snell, E.J.: Analysis of binary data, vol. 32. Chapman & Hall/CRC (1989)
Crick, F.H.: On protein synthesis. In: Symposia of the Society for Experimental Biology, vol. 12, p. 138 (1958)
Dayhoff, M.O., McLaughlin, P.J., Barker, W.C., Hunt, L.T.: Evolution of sequences within protein superfamilies. Naturwissenschaften 62(4), 154–161 (1975)
Dehouck, Y., Grosfils, A., Folch, B., Gilis, D., Bogaerts, P., Rooman, M.: Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks. Bioinformatics 25(19), 2537–2543 (2009)
Draghici, S., Potter, R.B.: Predicting HIV drug resistance with neural networks. Bioinformatics 19(1), 98–107 (2003)
Dyrløv Bendtsen, J., Nielsen, H., von Heijne, G., Brunak, S.: Improved prediction of signal peptides: Signalp 3.0. Journal of Molecular Biology 340(4), 783–795 (2004)
Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences 95(25), 14863 (1998)
Eisenbeis, R.A., Avery, R.B.: Discriminant analysis and classification procedures: theory and applications. Lexington Books (1972)
Fariselli, P., Finocchiaro, G., Casadio, R.: Speplip: the detection of signal peptide and lipoprotein cleavage sites. Bioinformatics 19(18), 2498 (2003)
Ferrán, E.A., Ferrara, P.: Clustering proteins into families using artificial neural networks. Computer Applications in the Biosciences: CABIOS 8(1), 39–44 (1992)
Fletcher, C.M., Wagner, G.: The interaction of eif4e with 4e-bp1 is an induced fit to a completely disordered protein. Protein Science 7(7), 1639–1642 (1998)
Guo, J., Xu, D., Kim, D., Xu, Y.: Improving the performance of domainparser for structural domain partition using neural network. Nucleic Acids Research 31(3), 944–952 (2003)
Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W.: Ten species in one: Dna barcoding reveals cryptic species in the neotropical skipper butterfly astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101(41), 14812 (2004)
Helles, G., Fonseca, R.: Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks. BMC Bioinformatics 10(1), 338 (2009)
Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17(2), 126–136 (2001)
Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C.F., Trent, J.M., Staudt, L.M., Hudson, J., Boguski, M.S., et al.: The transcriptional program in the response of human fibroblasts to serum. Science 283(5398), 83 (1999)
Jager, J., Sengupta, R., Ruzzo, W.L.: Improved gene selection for classification of microarrays. In: Pacific Symposium on Biocomputing 2003, Kauai, Hawaii, January 3-7, p. 53. World Scientific Pub. Co. Inc. (2002)
Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology 292(2), 195–202 (1999)
Kanhere, A., Bansal, M.: Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Research 33(10), 3165 (2005)
Kaur, H., Raghava, G.P.S.: A neural network method for prediction of β-turn types in proteins using evolutionary information. Bioinformatics 20(16), 2751–2758 (2004)
Keil, M., Exner, T.E., Brickmann, J.: Pattern recognition strategies for molecular surfaces: III. binding site prediction with a neural network. Journal of Computational Chemistry 25(6), 779–789 (2004)
Keşmir, C., Nussbaum, A.K., Schild, H., Detours, V., Brunak, S.: Prediction of proteasome cleavage motifs by neural networks. Protein Engineering 15(4), 287–296 (2002)
Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7(6), 673–679 (2001)
Kimoto, T., Asakawa, K., Yoda, M., Takeoka, M.: Stock market prediction system with modular neural networks. In: International Joint Conference on Neural Networks, vol. 1, pp. 1–6. IEEE (1990)
Kohonen, T.: Self-organization and associative memory. In: Self-Organization and Associative Memory, 100 figs. XV, 312 pages. Springer Series in Information Sciences, vol. 8, p. 1. Springer, Heidelberg (1988)
Kozobay-Avraham, L., Hosid, S., Bolshoy, A.: Involvement of DNA curvature in intergenic regions of prokaryotes. Nucleic Acids Research 34(8), 2316 (2006)
Kuang, R., Leslie, C.S., Yang, A.S.: Protein backbone angle prediction with machine learning approaches. Bioinformatics 20(10), 1612 (2004)
Lac, H., Kremer, S.: Inducing fold dynamics from known protein structures using machine learning. PhD thesis, CIS, University of Guelph (April 2009)
Lancashire, L.J., Powe, D.G., Reis-Filho, J.S., Rakha, E., Lemetre, C., Weigelt, B., Abdel-Fatah, T.M., Green, A.R., Mukta, R., Blamey, R., et al.: A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Research and Treatment 120(1), 83–93 (2010)
Li, X., Romero, P., Rani, M., Dunker, A.K., Obradovic, Z.: Predicting protein disorder for N-, C-, and internal regions. Genome Informatics Series, 30–40 (1999)
Lin, K., Simossis, V.A., Taylor, W.R., Heringa, J.: A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21(2), 152–159 (2005)
Liu, B., Cui, Q., Jiang, T., Ma, S.: A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 5(1), 136 (2004)
Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2), 442–451 (1975)
Mooney, C., Pollastri, G.: Beyond the twilight zone: Automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins: Structure, Function, and Bioinformatics 77(1), 181–190 (2009)
Plewczynski, D., Slabinski, L., Ginalski, K., Rychlewski, L.: Prediction of signal peptides in protein sequences by neural networks. Acta Biochimica Polonica 55(2), 261–267 (2008)
Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology 202(4), 865–884 (1988)
Rost, B., Sander, C.: Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proceedings of the National Academy of Sciences of the United States of America 90(16), 7558–7562 (1993)
Rost, B., Sander, C.: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins-Structure Function and Genetics 19(1), 55–72 (1994)
Sidman, K.E., George, D.G., Barker, W.C., Hunt, L.T.: The protein identification resource (PIR). Nucleic Acids Research 16(5), 1869 (1988)
Song, D., Deng, Z.: A novel ncRNA gene prediction approach based on fuzzy neural networks with structure learning. In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), pp. 1–5. IEEE (2010)
Speed, T.P.: Statistical analysis of gene expression microarray data. CRC Press (2003)
Tegge, A.N., Wang, Z., Eickholt, J., Cheng, J.: NNcon: improved protein contact map prediction using 2d-recursive neural networks. Nucleic Acids Research 37, w515–w518 (2009)
Vullo, A., Frasconi, P.: Disulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics 20(5), 653–659 (2004)
Walsh, I., Martin, A.J.M., Mooney, C., Rubagotti, E., Vullo, A., Pollastri, G.: Ab initio and homology based prediction of protein domains by recursive neural networks. BMC Bioinformatics 10(1), 195–214 (2009)
Wang, H., Noordewier, M., Benham, C.J.: Stress-induced DNA duplex destabilization (SIDD) in the e. coli genome: Sidd sites are closely associated with promoters. Genome Research 14(8), 1575 (2004)
Wang, J.T.L., Ma, Q., Shasha, D., Wu, C.H.: Application of neural networks to biological data mining: a case study in protein sequence classification. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 305–309. ACM (2000)
Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A., Lansbury Jr., P.T.: NACP, a protein implicated in alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43), 13709–13715 (1996)
Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L., Somogyi, R.: Large-scale temporal gene expression mapping of central nervous system development. Proceedings of the National Academy of Sciences 95(1), 334 (1998)
Wright, P.E., Dyson, H.J.: Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of Molecular Biology 293(2), 321–331 (1999)
Wu, C., Whitson, G., Mclarty, J., Ermongkonchai, A., Chang, T.C.: Protein classification artificial neural system. Protein Science: A Publication of the Protein Society 1(5), 667 (1992)
Zamani, M., Chiu, D.: An evaluation of DNA barcoding using genetic programming-based process. Life System Modeling and Intelligent Computing, 298–306 (2010)
Zhang, A.B., Sikes, D.S., Muster, C., Li, S.Q.: Inferring species membership using DNA sequences with back-propagation neural networks. Systematic Biology 57(2), 202–215 (2008)
Ziegel, E.R.: Probability and statistics for engineering and the sciences. Technometrics 46(4), 497–498 (2004)
Zimmermann, O., Hansmann, U.H.E.: Support vector machines for prediction of dihedral angle regions. Bioinformatics 22(24), 3009 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Zamani, M., Kremer, S.C. (2013). Neural Networks in Bioinformatics. In: Bianchini, M., Maggini, M., Jain, L. (eds) Handbook on Neural Information Processing. Intelligent Systems Reference Library, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36657-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-36657-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36656-7
Online ISBN: 978-3-642-36657-4
eBook Packages: EngineeringEngineering (R0)