Skip to main content

Neural Networks in Bioinformatics

  • Chapter
Handbook on Neural Information Processing

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 49))

  • 4282 Accesses

Abstract

Bioinformatics or computational biology is a multidisciplinary research area that combines molecular biology, computer science, and mathematics. Its aims are to organize, utilize and explore the vast amount of information obtained from biological experiments for understanding the relationships and useful patterns in data. Bioinformatics problems, such as protein structure prediction and sequence alignments, are commonly categorized as non-deterministic polynomial problems, and require sophisticated algorithms and powerful computational resources. Artificial Intelligence (AI) techniques have a proven track record in the development of many research areas in the applied sciences. Among the AI techniques, artificial neural networks (ANNs) and their variations have proven to be one of the more powerful tools in terms of their generalization and pattern recognition capabilities. In this chapter, we review a number of bioinformatics problems solved by different artificial neural network architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adamczak, R., Porollo, A., Meller, J.: Accurate prediction of solvent accessibility using neural networks-based regression. Proteins: Structure, Function, and Bioinformatics 56(4), 753–767 (2004)

    Article  Google Scholar 

  2. Ahmad, S., Gromiha, M.M., Sarai, A.: Real value prediction of solvent accessibility from amino acid sequence. Proteins: Structure, Function, and Bioinformatics 50(4), 629–635 (2003)

    Article  Google Scholar 

  3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. Journal of Molecular Biology 215(3), 403–410 (1990)

    Google Scholar 

  4. Arrigo, P., Giuliano, F., Scalia, F., Rapallo, A., Damiani, G.: Identification of a new motif on nucleic acid sequence data using Kohonen’s self-organizing map. Computer Applications in the Biosciences: CABIOS 7(3), 353 (1991)

    Google Scholar 

  5. Auray, J.P., Duru, G., Zighed, D.A.: Analyse des données multidimensionnelles: Les Méthodes de structuration. A. Lacassagne (1990)

    Google Scholar 

  6. Bai, B., Kremer, S.C.: In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine Workshops (2011) (to appear)

    Google Scholar 

  7. Baldi, P., Brunak, S., Frasconi, P., Pollastri, G., Soda, G.: Bidirectional dynamics for protein secondary structure prediction. Sequence Learning, 80–104 (2001)

    Google Scholar 

  8. Ball, G., Mian, S., Holding, F., Allibone, R.O., Lowe, J., Ali, S., Li, G., McCardle, S., Ellis, I.O., Creaser, C., et al.: An integrated approach utilizing artificial neural networks and SELDI mass spectrometry for the classification of human tumours and rapid identification of potential biomarkers. Bioinformatics 18(3), 395–404 (2002)

    Article  Google Scholar 

  9. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F.: et al. The protein data bank: A computer-based archival file for macromolecular structures. Journal of Molecular Biology 112(3), 535–542 (1977)

    Article  Google Scholar 

  10. Bland, C., Newsome, A., Markovets, A.: Promoter prediction in e. coli based on SIDD profiles and artificial neural networks. BMC Bioinformatics 11(suppl. 6), S17 (2010)

    Google Scholar 

  11. Bloomer, A.C., Champness, J.N., Bricogne, G., Staden, R., Klug, A.: Protein disk of tobacco mosaic virus at 2.8 a resolution showing the interactions within and between subunits. Nature 276(5686), 362 (1978)

    Article  Google Scholar 

  12. Brunak, S., Engelbrecht, J., Knudsen, S.: Prediction of human mRNA donor and acceptor sites from the DNA sequence. Journal of Molecular Biology 220(1), 49–65 (1991)

    Article  Google Scholar 

  13. Cheng, J., Baldi, P.: Three-stage prediction of protein-sheets by neural networks, alignments and graph algorithms. Bioinformatics 21(suppl. 1), i75–i84 (2005)

    Google Scholar 

  14. Cherkassky, V., Vassilas, N.: Performance of back propagation networks for associative database retrieval. In: International Joint Conference on Neural Networks, IJCNN, pp. 77–84. IEEE (1989)

    Google Scholar 

  15. Cheung, M., Fogel, G.B.: Identification of functional RNA genes using evolved neural networks. In: Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB 2005, pp. 1–7. IEEE (2005)

    Google Scholar 

  16. Choe, W., Ersoy, O.K., Bina, M.: Neural network schemes for detecting rare events in human genomic DNA. Bioinformatics 16(12), 1062–1072 (2000)

    Article  Google Scholar 

  17. Cox, D.R., Snell, E.J.: Analysis of binary data, vol. 32. Chapman & Hall/CRC (1989)

    Google Scholar 

  18. Crick, F.H.: On protein synthesis. In: Symposia of the Society for Experimental Biology, vol. 12, p. 138 (1958)

    Google Scholar 

  19. Dayhoff, M.O., McLaughlin, P.J., Barker, W.C., Hunt, L.T.: Evolution of sequences within protein superfamilies. Naturwissenschaften 62(4), 154–161 (1975)

    Article  Google Scholar 

  20. Dehouck, Y., Grosfils, A., Folch, B., Gilis, D., Bogaerts, P., Rooman, M.: Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks. Bioinformatics 25(19), 2537–2543 (2009)

    Article  Google Scholar 

  21. Draghici, S., Potter, R.B.: Predicting HIV drug resistance with neural networks. Bioinformatics 19(1), 98–107 (2003)

    Article  Google Scholar 

  22. Dyrløv Bendtsen, J., Nielsen, H., von Heijne, G., Brunak, S.: Improved prediction of signal peptides: Signalp 3.0. Journal of Molecular Biology 340(4), 783–795 (2004)

    Article  Google Scholar 

  23. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences 95(25), 14863 (1998)

    Article  Google Scholar 

  24. Eisenbeis, R.A., Avery, R.B.: Discriminant analysis and classification procedures: theory and applications. Lexington Books (1972)

    Google Scholar 

  25. Fariselli, P., Finocchiaro, G., Casadio, R.: Speplip: the detection of signal peptide and lipoprotein cleavage sites. Bioinformatics 19(18), 2498 (2003)

    Article  Google Scholar 

  26. Ferrán, E.A., Ferrara, P.: Clustering proteins into families using artificial neural networks. Computer Applications in the Biosciences: CABIOS 8(1), 39–44 (1992)

    Google Scholar 

  27. Fletcher, C.M., Wagner, G.: The interaction of eif4e with 4e-bp1 is an induced fit to a completely disordered protein. Protein Science 7(7), 1639–1642 (1998)

    Article  Google Scholar 

  28. Guo, J., Xu, D., Kim, D., Xu, Y.: Improving the performance of domainparser for structural domain partition using neural network. Nucleic Acids Research 31(3), 944–952 (2003)

    Article  Google Scholar 

  29. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H., Hallwachs, W.: Ten species in one: Dna barcoding reveals cryptic species in the neotropical skipper butterfly astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101(41), 14812 (2004)

    Article  Google Scholar 

  30. Helles, G., Fonseca, R.: Predicting dihedral angle probability distributions for protein coil residues from primary sequence using neural networks. BMC Bioinformatics 10(1), 338 (2009)

    Article  Google Scholar 

  31. Herrero, J., Valencia, A., Dopazo, J.: A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17(2), 126–136 (2001)

    Article  Google Scholar 

  32. Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C.F., Trent, J.M., Staudt, L.M., Hudson, J., Boguski, M.S., et al.: The transcriptional program in the response of human fibroblasts to serum. Science 283(5398), 83 (1999)

    Article  Google Scholar 

  33. Jager, J., Sengupta, R., Ruzzo, W.L.: Improved gene selection for classification of microarrays. In: Pacific Symposium on Biocomputing 2003, Kauai, Hawaii, January 3-7, p. 53. World Scientific Pub. Co. Inc. (2002)

    Google Scholar 

  34. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology 292(2), 195–202 (1999)

    Article  Google Scholar 

  35. Kanhere, A., Bansal, M.: Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Research 33(10), 3165 (2005)

    Article  Google Scholar 

  36. Kaur, H., Raghava, G.P.S.: A neural network method for prediction of β-turn types in proteins using evolutionary information. Bioinformatics 20(16), 2751–2758 (2004)

    Article  Google Scholar 

  37. Keil, M., Exner, T.E., Brickmann, J.: Pattern recognition strategies for molecular surfaces: III. binding site prediction with a neural network. Journal of Computational Chemistry 25(6), 779–789 (2004)

    Article  Google Scholar 

  38. KeÅŸmir, C., Nussbaum, A.K., Schild, H., Detours, V., Brunak, S.: Prediction of proteasome cleavage motifs by neural networks. Protein Engineering 15(4), 287–296 (2002)

    Article  Google Scholar 

  39. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7(6), 673–679 (2001)

    Article  Google Scholar 

  40. Kimoto, T., Asakawa, K., Yoda, M., Takeoka, M.: Stock market prediction system with modular neural networks. In: International Joint Conference on Neural Networks, vol. 1, pp. 1–6. IEEE (1990)

    Google Scholar 

  41. Kohonen, T.: Self-organization and associative memory. In: Self-Organization and Associative Memory, 100 figs. XV, 312 pages. Springer Series in Information Sciences, vol. 8, p. 1. Springer, Heidelberg (1988)

    Google Scholar 

  42. Kozobay-Avraham, L., Hosid, S., Bolshoy, A.: Involvement of DNA curvature in intergenic regions of prokaryotes. Nucleic Acids Research 34(8), 2316 (2006)

    Article  Google Scholar 

  43. Kuang, R., Leslie, C.S., Yang, A.S.: Protein backbone angle prediction with machine learning approaches. Bioinformatics 20(10), 1612 (2004)

    Article  Google Scholar 

  44. Lac, H., Kremer, S.: Inducing fold dynamics from known protein structures using machine learning. PhD thesis, CIS, University of Guelph (April 2009)

    Google Scholar 

  45. Lancashire, L.J., Powe, D.G., Reis-Filho, J.S., Rakha, E., Lemetre, C., Weigelt, B., Abdel-Fatah, T.M., Green, A.R., Mukta, R., Blamey, R., et al.: A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Research and Treatment 120(1), 83–93 (2010)

    Article  Google Scholar 

  46. Li, X., Romero, P., Rani, M., Dunker, A.K., Obradovic, Z.: Predicting protein disorder for N-, C-, and internal regions. Genome Informatics Series, 30–40 (1999)

    Google Scholar 

  47. Lin, K., Simossis, V.A., Taylor, W.R., Heringa, J.: A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21(2), 152–159 (2005)

    Article  Google Scholar 

  48. Liu, B., Cui, Q., Jiang, T., Ma, S.: A combinational feature selection and ensemble neural network method for classification of gene expression data. BMC Bioinformatics 5(1), 136 (2004)

    Article  Google Scholar 

  49. Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2), 442–451 (1975)

    Article  Google Scholar 

  50. Mooney, C., Pollastri, G.: Beyond the twilight zone: Automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins: Structure, Function, and Bioinformatics 77(1), 181–190 (2009)

    Article  Google Scholar 

  51. Plewczynski, D., Slabinski, L., Ginalski, K., Rychlewski, L.: Prediction of signal peptides in protein sequences by neural networks. Acta Biochimica Polonica 55(2), 261–267 (2008)

    Google Scholar 

  52. Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology 202(4), 865–884 (1988)

    Article  Google Scholar 

  53. Rost, B., Sander, C.: Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proceedings of the National Academy of Sciences of the United States of America 90(16), 7558–7562 (1993)

    Article  Google Scholar 

  54. Rost, B., Sander, C.: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins-Structure Function and Genetics 19(1), 55–72 (1994)

    Article  Google Scholar 

  55. Sidman, K.E., George, D.G., Barker, W.C., Hunt, L.T.: The protein identification resource (PIR). Nucleic Acids Research 16(5), 1869 (1988)

    Article  Google Scholar 

  56. Song, D., Deng, Z.: A novel ncRNA gene prediction approach based on fuzzy neural networks with structure learning. In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE), pp. 1–5. IEEE (2010)

    Google Scholar 

  57. Speed, T.P.: Statistical analysis of gene expression microarray data. CRC Press (2003)

    Google Scholar 

  58. Tegge, A.N., Wang, Z., Eickholt, J., Cheng, J.: NNcon: improved protein contact map prediction using 2d-recursive neural networks. Nucleic Acids Research 37, w515–w518 (2009)

    Article  Google Scholar 

  59. Vullo, A., Frasconi, P.: Disulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics 20(5), 653–659 (2004)

    Article  Google Scholar 

  60. Walsh, I., Martin, A.J.M., Mooney, C., Rubagotti, E., Vullo, A., Pollastri, G.: Ab initio and homology based prediction of protein domains by recursive neural networks. BMC Bioinformatics 10(1), 195–214 (2009)

    Article  Google Scholar 

  61. Wang, H., Noordewier, M., Benham, C.J.: Stress-induced DNA duplex destabilization (SIDD) in the e. coli genome: Sidd sites are closely associated with promoters. Genome Research 14(8), 1575 (2004)

    Article  Google Scholar 

  62. Wang, J.T.L., Ma, Q., Shasha, D., Wu, C.H.: Application of neural networks to biological data mining: a case study in protein sequence classification. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 305–309. ACM (2000)

    Google Scholar 

  63. Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A., Lansbury Jr., P.T.: NACP, a protein implicated in alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43), 13709–13715 (1996)

    Article  Google Scholar 

  64. Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L., Somogyi, R.: Large-scale temporal gene expression mapping of central nervous system development. Proceedings of the National Academy of Sciences 95(1), 334 (1998)

    Article  Google Scholar 

  65. Wright, P.E., Dyson, H.J.: Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. Journal of Molecular Biology 293(2), 321–331 (1999)

    Article  Google Scholar 

  66. Wu, C., Whitson, G., Mclarty, J., Ermongkonchai, A., Chang, T.C.: Protein classification artificial neural system. Protein Science: A Publication of the Protein Society 1(5), 667 (1992)

    Article  Google Scholar 

  67. Zamani, M., Chiu, D.: An evaluation of DNA barcoding using genetic programming-based process. Life System Modeling and Intelligent Computing, 298–306 (2010)

    Google Scholar 

  68. Zhang, A.B., Sikes, D.S., Muster, C., Li, S.Q.: Inferring species membership using DNA sequences with back-propagation neural networks. Systematic Biology 57(2), 202–215 (2008)

    Article  Google Scholar 

  69. Ziegel, E.R.: Probability and statistics for engineering and the sciences. Technometrics 46(4), 497–498 (2004)

    Google Scholar 

  70. Zimmermann, O., Hansmann, U.H.E.: Support vector machines for prediction of dihedral angle regions. Bioinformatics 22(24), 3009 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masood Zamani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zamani, M., Kremer, S.C. (2013). Neural Networks in Bioinformatics. In: Bianchini, M., Maggini, M., Jain, L. (eds) Handbook on Neural Information Processing. Intelligent Systems Reference Library, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36657-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36657-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36656-7

  • Online ISBN: 978-3-642-36657-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics