Abstract
In this paper, we propose a novel approach to face recognition, called Multi-scale Block Local Ternary Patterns (MB-LTP), which considers both local and various scale texture information to represent face images. In MB-LTP, we compare average values of sub-regions and use a 3-valued codes method to get the MB-LTP value. The MB-LTP histograms are then extracted and concatenated into a single, spatially enhanced feature vector representing the face image in recognition. We use a nearest neighbor classifier in the computed feature space with Chi square as a dissimilarity measure. MB-LTP code presents several advantages: (1)It is more robust than LBP;(2)it is more discriminative and less sensitive to noise;(3)it encodes not only microstructures but also macrostructures of image patterns. Experiments on ORL and AR databases show that the proposed MB-LTP method significantly outperforms other LBP based face recognition algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Guodail, F., Lange, E., Iwamoto, T.: Face recognition system using local autocorrelations and multiscale integration. IEEE TPAMI 18(10), 1024–1028 (1996)
Lee, K., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE TPAMI 27(5), 684–698 (2005)
Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE TPAMI 28(5), 725–737 (2006)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 971–987 (2002)
Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning Multi-scale Block Local Binary Patterns for Face Recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhu, L., Zhang, Y., Sun, C., Yang, W. (2013). Face Recognition with Multi-scale Block Local Ternary Patterns. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-36669-7_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36668-0
Online ISBN: 978-3-642-36669-7
eBook Packages: Computer ScienceComputer Science (R0)