Skip to main content

Predicting the Age of Healthy Adults from Structural MRI by Sparse Representation

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

  • 2640 Accesses

Abstract

It is generally accepted that degenerative brain diseases lead to abnormal aging process of the human brain. Thus, healthy brain aging model has great potential in clinical diagnosis and intervention. The aim of this work is to construct a regression model which is efficient for age prediction of healthy brain. Two groups of T1-weighted MRI images were involved. The first group was used for voxel selection then corresponding voxels in the second group were used for age prediction. Then mean absolute error (MAE) between the predicted age and the true age is obtained. The age prediction accuracy can reach as high as 4.67 years (MAE). In conclusion, the framework in current study can be a healthy aging model for abnormality detection of human brain. The brain regions identified by this model is sensitive to aging process which can be viewed as biomarker of brain age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heemels, M.-T.: Ageing. Nature 464, 503 (2010)

    Article  Google Scholar 

  2. Frisoni, G.B., Fox, N.C., Jack Jr., C.R., Scheltens, P., Thompson, P.M.: The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology 6, 67–77 (2010)

    Article  Google Scholar 

  3. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage 39, 1731–1743 (2008)

    Article  Google Scholar 

  4. Franke, K., Ziegler, G., Kloppel, S., Gaser, C.: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50, 883–892 (2010)

    Article  Google Scholar 

  5. Brickman, A.M., Habeck, C., Zarahn, E., Flynn, J., Stern, Y.: Structural MRI covariance patterns associated with normal aging and neuropsychological functioning. Neurobiol. Aging. 28, 284–295 (2007)

    Article  Google Scholar 

  6. Wang, B., Pham, T.D.: MRI-based age prediction using hidden Markov models. J. Neurosci Methods 199, 140–145 (2011)

    Article  Google Scholar 

  7. Brown, T.T., Kuperman, J.M., Chung, Y., Erhart, M., McCabe, C., et al.: Neuroanatomical Assessment of Biology Maturity. Current Biology 22, 1–6 (2012)

    Article  Google Scholar 

  8. Taki, Y., Kinomura, S., Sato, K., Goto, R., Kawashima, R., et al.: A longitudinal study of gray matter volume decline with age and modifying factors. Neurobiol. Aging. 32, 907–915 (2009)

    Article  Google Scholar 

  9. Salat, D.H., Lee, S.Y., van der Kouwe, A.J., Greve, D.N., Fischl, B., et al.: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. NeuroImage 48, 21–28 (2009)

    Article  Google Scholar 

  10. Tisserand, D.J., van Boxtel, M.P.J., Pruessner, J.C., Hofman, P., Evans, A.C., et al.: A Voxel-based morphometric study to determine individual differences in gray matter density associated with age and cognitive change over time. Cereb. Cortex 14, 966–973 (2004)

    Article  Google Scholar 

  11. Galluzzi, S., Beltramello, A., Filippi, M., Frisoni, G.B.: Aging. Neurol Sci. 29, s296–s300 (2008)

    Article  Google Scholar 

  12. Ge, Y., Grossman, R.I., Babb, J.S., Rabin, M.L., Mannon, L.J., et al.: Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR Imaging analysis. Am J. Neuroradiol. 23, 1327–1333 (2002)

    Google Scholar 

  13. Giorgio, A., Santelli, L., Tomassini, V., Bosnell, R., Smith, S., et al.: Age-related changes in grey and white matter structure throughout adulthood. NeuroImage 51, 943–951 (2010)

    Article  Google Scholar 

  14. Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N.A., Friston, K.J., et al.: A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14, 21–36 (2001)

    Article  Google Scholar 

  15. Smith, C.D., Chebrolu, H., Wekstein, D.R., Schmitt, F.A., Markesbery, W.R.: Age and gender effects on human brain anatomy: A voxel-based morphometric study in healthy elderly. Neurobiol. Aging. 28, 1075–1087 (2007)

    Article  Google Scholar 

  16. Shen, H., Wang, L., Liu, Y., Hu, D.: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. Neuroimage 49, 3110–3121 (2010)

    Article  Google Scholar 

  17. Robinson, E.C., Hammers, A., Ericsson, A., Edwards, A.D., Rueckert, D.: Identifying population differences in whole-brain structural networks: a machine learning approach. Neuroimage 50, 910–919 (2010)

    Article  Google Scholar 

  18. Su, L., Wang, L., Chen, F., Shen, H., Li, B., et al.: Sparse representation of brain aging: extracting covariance patterns from structural MRI. PLoS One 7, e36147 (2012)

    Google Scholar 

  19. Daubechies, I., Roussos, E., Takerkart, S., Benharrosh, M., Golden, C., et al.: Independent component analysis for brain fMRI does not select for independence. Proc. Natl. Acad. Sci. USA 106, 10415–10422 (2009)

    Article  Google Scholar 

  20. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., et al.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cognitive NeuroSci. 19, 1498–1507 (2007)

    Article  Google Scholar 

  21. Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007)

    Article  Google Scholar 

  22. Li, Y., Namburi, P., Yu, Z., Guan, C., Feng, J., et al.: Voxel selection in fMRI data analysis based on sparse representation. IEEE T. Bio.-Med. Eng. 56, 2439–2451 (2009)

    Article  Google Scholar 

  23. Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., et al.: Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 49, 44–56 (2010)

    Article  Google Scholar 

  24. Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 26, 93–105 (2007)

    Article  Google Scholar 

  25. Duara, R., Loewenstein, D.A., Potter, E., Appel, J., Greig, M.T., et al.: Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 71, 1986–1992 (2008)

    Article  Google Scholar 

  26. Li, S., Xia, M., Pu, F., Li, D., Fan, Y., et al.: Age-related changes in the surface morphology of the central sulcus. Neuroimage 58, 381–390 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Su, L., Wang, L., Hu, D. (2013). Predicting the Age of Healthy Adults from Structural MRI by Sparse Representation. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics