Skip to main content

Measuring the Attentional Effect of the Bottom-Up Saliency Map of Natural Images

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

Abstract

A saliency map is the bottom-up contribution to the deployment of exogenous attention. It, as well as its underlying neural mechanism, is hard to identify because of the existence of top-down signals. In order to exclude the contamination of top-down signals, invisible natural images were used as our stimuli to guide attention. The saliency map of natural images was calculated according to the model developed by Itti \(et\ al.\) [1]. We found a salient region in natural images could attract attention to improve subjects’ orientation discrimination performance at the salient region. Furthermore, the attraction of attention increased with the degree of saliency. Our findings suggest that the bottom-up saliency map of a natural image could be generated at a very early stage of visual processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Itti, L., Koch, C., Niebur, E.: A model of saliency based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. Mach. Intell. 20, 1254–1259 (1998)

    Article  Google Scholar 

  2. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985)

    Google Scholar 

  3. Geng, J.J., Mangun, G.R.: Anterior intraparietal sulcus is sensitive to bottom-up attention driven by stimulus salience. J. Cogn. Neurosci. 21, 1584–1601 (2008)

    Article  Google Scholar 

  4. Mazer, J.A., Gallent, J.L.: Goal-related activity in V4 during free viewing visual search: evidence for a ventral stream visual salience map. Neuron 40, 1241–1250 (2003)

    Article  Google Scholar 

  5. Zhang, X., Zhaoping, L., Zhou, T., Fang, F.: Neural activities in V1 create a bottom-up saliency map. Neuron 73, 183–192 (2012)

    Article  Google Scholar 

  6. Bogler, C., Bode, S., Haynes, J.D.: Decoding Successive Computational Stages of Saliency Processing. Curr. Biol. 21, 1667–1671 (2011)

    Article  Google Scholar 

  7. Fang, F., He, S.: Cortical responses to invisible objects in human dorsal and ventral pathways. Nature Neuroscience 8, 1380–1385 (2005)

    Article  Google Scholar 

  8. Posner, M.I., Snyder, C.R.R., Davidson, B.J.: Attention and the detection of signals. J. Exp. Psychol. 109, 160–174 (1980)

    Article  Google Scholar 

  9. Eckstein, M.P., Schimozaki, S.S., Abbey, C.K.: The footprints of visual attention in the Posner cueing paradigm revealed by classification images. J. Vis. 2, 25–45 (2002)

    Article  Google Scholar 

  10. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: IEEE Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  11. Wang, W., Wang, Y., Huang, Q., Gao, W.: Measuing visual saliency by site entropy rate. In: IEEE Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  12. Itti, L., Koch, C., Niebur, E.: Computational Modelling of Visual Attention. Nat. Rev. Neurosci. 2, 194–203 (2001)

    Article  Google Scholar 

  13. Li, Z.: Contextual influences in V1 as a basis for pop out and asymmetry in visual search. Proc. Natl. Acad. Sci. USA. 96, 10530–10535 (1999)

    Article  Google Scholar 

  14. Li, Z.: A saliency map in primary visual cortex. Trends Cogn. Sci. 6, 9–16 (2002)

    Article  Google Scholar 

  15. Allman, J., Miezin, F., McGuinness, E.: Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu. Rev. Neurosci. 8, 407–430 (1985)

    Article  Google Scholar 

  16. Jiang, Y., Costello, P., Fang, F., Huang, M., He, S.: A gender-and sexual orientation-dependent spatial attentional effect of invisible images. Proc. Natl. Acad. Sci. USA. 103, 17048–17052 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, C., Zhang, X., Wang, Y., Fang, F. (2013). Measuring the Attentional Effect of the Bottom-Up Saliency Map of Natural Images. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics