Skip to main content

Battery State-of-Charge Approximation for Energy Harvesting Embedded Systems

  • Conference paper
Wireless Sensor Networks (EWSN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7772))

Included in the following conference series:

Abstract

Batteries play an integral role in Wireless Sensor Networks as they provide the energy necessary to operate the individual sensor nodes. In order to extend the network’s lifetime, and theoretically permit continuous operation even for systems with high-energy consumption, environmental energy harvesting has attracted much interest. It has been shown that the motes’ utility can be improved significantly if run-time knowledge of remaining battery capacity is available. In this work, a light-weight and cost effective approach to approximating the battery state-of-charge (SOC) based on voltage measurements is presented. Despite commonly perceived as inferior to other approaches, a performance evaluation shows that SOC approximations with over 95% accuracy are possible. It is further shown that battery inefficiencies due to e.g., temperature and aging are taken into consideration despite not explicitly modeling these effects. The approach only requires system input voltage measurements, but benefits from optional current and temperature measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, V., et al.: Development and Validation of a Battery Model Useful for Discharging and Charging Power Control and Lifetime Estimation. IEEE Transactions on Energy Conversion 25(3), 821–835 (2010)

    Article  Google Scholar 

  2. Alessandrelli, D., Azzarà, A., Petracca, M., Nastasi, C., Pagano, P.: ScanTraffic: Smart Camera Network for Traffic Information Collection. In: Picco, G.P., Heinzelman, W. (eds.) EWSN 2012. LNCS, vol. 7158, pp. 196–211. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bergveld, H.J.: Battery management systems: design by modelling. Ph.D. dissertation, Enschede (June 2001)

    Google Scholar 

  4. Beutel, J., Buchli, B., Ferrari, F., Keller, M., Zimmerling, M., Thiele, L.: X-Sense: Sensing in extreme environments. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1–6 (March 2011)

    Google Scholar 

  5. Buchli, B., et al.: Demo abstract: Feature-rich experimentation for wsn design space exploration. In: Proceedings of the 10th International Conference on Information Processing in Sensor Networks (IPSN 2011), pp. 115–116. ACM/IEEE, Chicago, IL, USA (2011)

    Google Scholar 

  6. Buchli, B., Sutton, F., Beutel, J.: GPS-Equipped Wireless Sensor Network Node for High-Accuracy Positioning Applications. In: Picco, G.P., Heinzelman, W. (eds.) EWSN 2012. LNCS, vol. 7158, pp. 179–195. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Cardei, M., Du, D.-Z.: Improving wireless sensor network lifetime through power aware organization. Wirel. Netw. 11(3), 333–340 (2005)

    Article  Google Scholar 

  8. Castagnetti, A., et al.: An efficient state of charge prediction model for solar harvesting wsn platforms. In: 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 122–125 (April 2012)

    Google Scholar 

  9. Concorde Battery Corporation, Technical Manual for Lifeline Batteries (July 2011)

    Google Scholar 

  10. Doerffel, D., Abu-Sharkh, S.: A critical review of using Peukert-equation for determining the remaining capacity of lead-acid and lithium ion batteries. Journal of Power Sources 155(2), 395–400 (2006)

    Article  Google Scholar 

  11. Dunkels, A., et al.: Software-based on-line energy estimation for sensor nodes. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, EmNets 2007, pp. 28–32. ACM, New York (2007)

    Google Scholar 

  12. Glatz, P.M., et al.: Designing Perpetual Energy Harvesting Systems explained with RiverMote: A Wireless Sensor Network Platform for River Monitoring. Electronic Journal of Structural Engineering, Special Issue: Wireless Sensor Networks and Practical Applications, 55–65 (2010)

    Google Scholar 

  13. Han, J., et al.: State-of-charge estimation of lead-acid batteries using an adaptive extended Kalman filter. Journal of Power Sources 188(2), 606–612 (2009)

    Article  Google Scholar 

  14. Hart, J.K., Martinez, K., Ong, R., Riddoch, A., Rose, K., Padhy, P.: An autonomous multi-sensor subglacial probe: Design and preliminary results from briksdalsbreen, norway. Journal of Glaciology 51(178), 389–397 (2006)

    Article  Google Scholar 

  15. James, F.B., Gilbert, M.: Comparison of energy harvesting systems for wireless sensor networks. International Journal of Automation and Computing 5(4), 334 (2008)

    Article  MathSciNet  Google Scholar 

  16. Jeong, J., Jiang, X.F., Culler, D.E.: Design and Analysis of Micro-Solar Power Systems for Wireless Sensor Networks. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2007-24 (February 2007)

    Google Scholar 

  17. Jiang, X., et al.: Micro power meter for energy monitoring of wireless sensor networks at scale. In: Proceedings of the 6th International Conference on Information Processing in Sensor Networks, IPSN 2007, pp. 186–195. ACM, New York (2007)

    Google Scholar 

  18. Kerasiotis, F., Prayati, A., Antonopoulos, C., Koulamas, C., Papadopoulos, G.: Battery lifetime prediction model for a wsn platform. In: Proceedings of the 2010 Fourth International Conference on Sensor Technologies and Applications. SENSORCOMM 2010, pp. 525–530. IEEE Computer Society, Washington, DC (2010)

    Chapter  Google Scholar 

  19. Maxim Integrated Products, Evaluation Kit for the MAX1660 (1998), http://datasheets.maxim-ic.com/en/ds/MAX1660EVKIT.pdf (accessed: December 21, 2012)

  20. Morningstar Corporation, SunSaver Photovoltaic System Controllers Operator’s Manual (November 2009)

    Google Scholar 

  21. Park, C., Lahiri, K., Raghunathan, A.: Battery discharge characteristics of wireless sensor nodes: An experimental analysis. In: Proceedings of the IEEE Conf. on Sensor and Ad-hoc Communications and Networks, SECON (2005)

    Google Scholar 

  22. Penella Lopez, M.T., et al.: Powering wireless sensor nodes: primary batteries versus energy harvesting (2009)

    Google Scholar 

  23. Peukert, W.: Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren 18, 287–288 (1897)

    Google Scholar 

  24. Piller, S., et al.: Methods for state-of-charge determination and their applications. Journal of Power Sources 96(1), 113–120 (2001)

    Article  Google Scholar 

  25. Pop, V., et al.: State-of-the-art of battery state-of-charge determination. Measurement Science and Technology 16(12), R93 (2005)

    Google Scholar 

  26. Raghunathan, V., et al.: Design considerations for solar energy harvesting wireless embedded systems. In: Fourth International Symposium on Information Processing in Sensor Networks, IPSN 2005, pp. 457–462 (April 2005)

    Google Scholar 

  27. Randall, J.F.: pp. 1–11. John Wiley & Sons, Ltd. (2006)

    Google Scholar 

  28. Rao, R., Vrudhula, S., Rakhmatov, D.: Battery modeling for energy aware system design. Computer 36(12), 77–87 (2003)

    Article  Google Scholar 

  29. Taneja, J., Jeong, J., Culler, D.: Design, modeling, and capacity planning for micro-solar power sensor networks. In: International Conference on Information Processing in Sensor Networks, IPSN 2008, pp. 407–418 (April 2008)

    Google Scholar 

  30. Vasebi, A., et al.: A novel combined battery model for state-of-charge estimation in lead-acid batteries based on extended Kalman filter for hybrid electric vehicle applications. Journal of Power Sources 174(1), 30–40 (2007); Hybrid Electric Vehicles

    Article  Google Scholar 

  31. Weber, S., et al.: Design and measurement assembly to study in-situ rock damage driven by freezing. In: Proceedings of the Tenth International Conference on Permafrost. International Contributions, vol. 1, pp. 437–442. The State Enterprise of the Yamal-Nenets Autonomous District, The Northern Publisher (Severnoye Izdatelstvo), Salekard,Yamal-Nenets autonomous district, Russland (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buchli, B., Aschwanden, D., Beutel, J. (2013). Battery State-of-Charge Approximation for Energy Harvesting Embedded Systems. In: Demeester, P., Moerman, I., Terzis, A. (eds) Wireless Sensor Networks. EWSN 2013. Lecture Notes in Computer Science, vol 7772. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36672-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36672-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36671-0

  • Online ISBN: 978-3-642-36672-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics