Skip to main content

Superposition for Bounded Domains

  • Chapter
Automated Reasoning and Mathematics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7788))

  • 910 Accesses

Abstract

Reasoning about bounded domains in resolution calculi is often painful. For explicit and small domains and formulas with a few variables, grounding can be a successful approach. This approach was in particular shown to be effective by Bill McCune. For larger domains or larger formula sets with many variables, there is not much known. In particular, despite general decidability, superposition implementations that can meanwhile deal with large formula sets typically will not necessarily terminate. We start from the observation that lifting can be done more economically here: A variable does not stand anymore for every ground term, but just for the finitely many domain representatives. Thanks to this observation, the inference rules of superposition can drastically be restricted, and redundancy becomes effective. We present one calculus configuration which constitutes a decision procedure for satisfiability modulo the cardinality bound, and hence decides the Bernays-Schönfinkel class as a simple consequence. Finally, our approach also applies to bounded sorts in combination with arbitrary other, potentially infinite sorts in the framework of soft sorts. This frequent combination – which we recently explored in a combination of Spass and Isabelle – is an important motivation of our study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Armando, A., Ranise, S., Rusinowitch, M.: Uniform Derivation of Decision Procedures by Superposition. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 513–527. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Transactions on Computational Logic 10(1), 4:1–4:51 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. In: Ahrendt, W., Baumgartner, P., de Nivelle, H. (eds.) Proceedings of the Third Workshop on Disproving, pp. 82–99 (2006)

    Google Scholar 

  7. Baumgartner, P., Furbach, U., Pelzer, B.: The hyper tableaux calculus with equality and an application to finite model computation. Journal of Logic and Computation 20(1), 77–109 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baumgartner, P., Schmidt, R.A.: Blocking and Other Enhancements for Bottom-Up Model Generation Methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 125–139. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Bernays, P., Schönfinkel, M.: Zum Entscheidungsproblem der mathematischen Logik. Mathematische Annalen 99, 342–372 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with Isabelle—Superposition with Hard Sorts and Configurable Simplification. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 345–360. Springer, Heidelberg (2012), http://www4.in.tum.de/~blanchet/more-spass.pdf

    Chapter  Google Scholar 

  11. Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 513–527. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Bonacina, M.P., Lynch, C., Mendonça de Moura, L.: On deciding satisfiability by theorem proving with speculative inferences. Journal of Automated Reasoning 47(2), 161–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the Workshop on Model Computation (2003)

    Google Scholar 

  14. de Nivelle, H., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite Model Search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Dershowitz, N.: A Maximal-Literal Unit Strategy for Horn Clauses. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 14–25. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  16. Fietzke, A., Weidenbach, C.: Labelled splitting. Annals of Mathematics and Artificial Intellelligence 55(1-2), 3–34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. In: Ratschan, S. (ed.) MACIS 2011: Fourth International Conference on Mathematical Aspects of Computer and Information Sciences, pp. 52–62 (2011); Journal version to appear in the Journal of Mathematics in Computer Science

    Google Scholar 

  18. Fontaine, P., Merz, S., Weidenbach, C.: Combination of Disjoint Theories: Beyond Decidability. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 256–270. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Resolution. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 321–335. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Hillenbrand, T., Topic, D., Weidenbach, C.: Sudokus as logical puzzles. In: Ahrendt, W., Baumgartner, P., de Nivelle, H. (eds.) Proceedings of the Third Workshop on Disproving, pp. 2–12 (2006)

    Google Scholar 

  21. Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research Report MPI-I-2007-RG1-002, Max-Planck-Institut für Informatik, Saarbrücken (2007), http://www.mpi-inf.mpg.de/~hillen/documents/HW07.ps

  22. Kamin, S., Levy, J.-J.: Attempts for generalizing the recursive path orderings. University of Illinois, Department of Computer Science. Unpublished note (1980), Available electronically from http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html

  23. Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: On Superposition-Based Satisfiability Procedures and Their Combination. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Manthey, R., Bry, F.: Satchmo: A Theorem Prover Implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  25. McCune, W.: Mace4 reference manual and guide. Technical Report ANL/MCS-TM-264, Argonne National Laboratory (2003)

    Google Scholar 

  26. McCune, W.: Prover9 and mace4 (2005-2010), http://www.cs.unm.edu/~ccune/prover9/

  27. McCune, W.: Otter 3.3 reference manual. CoRR, cs.SC/0310056 (2003)

    Google Scholar 

  28. Minsky, M.L.: Computation: Finite and Infinite Machines. Automatic Computation. Prentice-Hall (1967)

    Google Scholar 

  29. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 7, pp. 371–443. Elsevier (2001)

    Google Scholar 

  30. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53, 937–977 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on the Implementation of Logics (2010)

    Google Scholar 

  32. Navarro, J.A., Voronkov, A.: Proof Systems for Effectively Propositional Logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 426–440. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Schulz, S., Bonacina, M.P.: On Handling Distinct Objects in the Superposition Calculus. In: Konev, B., Schulz, S. (eds.) Proc. of the 5th International Workshop on the Implementation of Logics, Montevideo, Uruguay, pp. 66–77 (2005)

    Google Scholar 

  34. Slaney, J.: FINDER: Finite Domain Enumerator. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 798–801. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  35. Suda, M., Weidenbach, C., Wischnewski, P.: On the Saturation of YAGO. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 441–456. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  36. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, ch. 27, pp. 1965–2012. Elsevier (2001)

    Google Scholar 

  37. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  38. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  39. Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 1, pp. 298–303. Morgan Kaufmann (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hillenbrand, T., Weidenbach, C. (2013). Superposition for Bounded Domains. In: Bonacina, M.P., Stickel, M.E. (eds) Automated Reasoning and Mathematics. Lecture Notes in Computer Science(), vol 7788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36675-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36675-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36674-1

  • Online ISBN: 978-3-642-36675-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics