Abstract
Reasoning about bounded domains in resolution calculi is often painful. For explicit and small domains and formulas with a few variables, grounding can be a successful approach. This approach was in particular shown to be effective by Bill McCune. For larger domains or larger formula sets with many variables, there is not much known. In particular, despite general decidability, superposition implementations that can meanwhile deal with large formula sets typically will not necessarily terminate. We start from the observation that lifting can be done more economically here: A variable does not stand anymore for every ground term, but just for the finitely many domain representatives. Thanks to this observation, the inference rules of superposition can drastically be restricted, and redundancy becomes effective. We present one calculus configuration which constitutes a decision procedure for satisfiability modulo the cardinality bound, and hence decides the Bernays-Schönfinkel class as a simple consequence. Finally, our approach also applies to bounded sorts in combination with arbitrary other, potentially infinite sorts in the framework of soft sorts. This frequent combination – which we recently explored in a combination of Spass and Isabelle – is an important motivation of our study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Althaus, E., Kruglov, E., Weidenbach, C.: Superposition Modulo Linear Arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 84–99. Springer, Heidelberg (2009)
Armando, A., Ranise, S., Rusinowitch, M.: Uniform Derivation of Decision Procedures by Superposition. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 513–527. Springer, Heidelberg (2001)
Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Transactions on Computational Logic 10(1), 4:1–4:51 (2009)
Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)
Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)
Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction to function-free clause logic. In: Ahrendt, W., Baumgartner, P., de Nivelle, H. (eds.) Proceedings of the Third Workshop on Disproving, pp. 82–99 (2006)
Baumgartner, P., Furbach, U., Pelzer, B.: The hyper tableaux calculus with equality and an application to finite model computation. Journal of Logic and Computation 20(1), 77–109 (2010)
Baumgartner, P., Schmidt, R.A.: Blocking and Other Enhancements for Bottom-Up Model Generation Methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 125–139. Springer, Heidelberg (2006)
Bernays, P., Schönfinkel, M.: Zum Entscheidungsproblem der mathematischen Logik. Mathematische Annalen 99, 342–372 (1928)
Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with Isabelle—Superposition with Hard Sorts and Configurable Simplification. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 345–360. Springer, Heidelberg (2012), http://www4.in.tum.de/~blanchet/more-spass.pdf
Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability and Undecidability Results for Nelson-Oppen and Rewrite-Based Decision Procedures. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 513–527. Springer, Heidelberg (2006)
Bonacina, M.P., Lynch, C., Mendonça de Moura, L.: On deciding satisfiability by theorem proving with speculative inferences. Journal of Automated Reasoning 47(2), 161–189 (2011)
Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the Workshop on Model Computation (2003)
de Nivelle, H., Meng, J.: Geometric Resolution: A Proof Procedure Based on Finite Model Search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)
Dershowitz, N.: A Maximal-Literal Unit Strategy for Horn Clauses. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 14–25. Springer, Heidelberg (1991)
Fietzke, A., Weidenbach, C.: Labelled splitting. Annals of Mathematics and Artificial Intellelligence 55(1-2), 3–34 (2009)
Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. In: Ratschan, S. (ed.) MACIS 2011: Fourth International Conference on Mathematical Aspects of Computer and Information Sciences, pp. 52–62 (2011); Journal version to appear in the Journal of Mathematics in Computer Science
Fontaine, P., Merz, S., Weidenbach, C.: Combination of Disjoint Theories: Beyond Decidability. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 256–270. Springer, Heidelberg (2012)
Ganzinger, H., Meyer, C., Weidenbach, C.: Soft Typing for Ordered Resolution. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 321–335. Springer, Heidelberg (1997)
Hillenbrand, T., Topic, D., Weidenbach, C.: Sudokus as logical puzzles. In: Ahrendt, W., Baumgartner, P., de Nivelle, H. (eds.) Proceedings of the Third Workshop on Disproving, pp. 2–12 (2006)
Hillenbrand, T., Weidenbach, C.: Superposition for finite domains. Research Report MPI-I-2007-RG1-002, Max-Planck-Institut für Informatik, Saarbrücken (2007), http://www.mpi-inf.mpg.de/~hillen/documents/HW07.ps
Kamin, S., Levy, J.-J.: Attempts for generalizing the recursive path orderings. University of Illinois, Department of Computer Science. Unpublished note (1980), Available electronically from http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html
Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: On Superposition-Based Satisfiability Procedures and Their Combination. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005)
Manthey, R., Bry, F.: Satchmo: A Theorem Prover Implemented in Prolog. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)
McCune, W.: Mace4 reference manual and guide. Technical Report ANL/MCS-TM-264, Argonne National Laboratory (2003)
McCune, W.: Prover9 and mace4 (2005-2010), http://www.cs.unm.edu/~ccune/prover9/
McCune, W.: Otter 3.3 reference manual. CoRR, cs.SC/0310056 (2003)
Minsky, M.L.: Computation: Finite and Infinite Machines. Automatic Computation. Prentice-Hall (1967)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 7, pp. 371–443. Elsevier (2001)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM 53, 937–977 (2006)
Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on the Implementation of Logics (2010)
Navarro, J.A., Voronkov, A.: Proof Systems for Effectively Propositional Logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 426–440. Springer, Heidelberg (2008)
Schulz, S., Bonacina, M.P.: On Handling Distinct Objects in the Superposition Calculus. In: Konev, B., Schulz, S. (eds.) Proc. of the 5th International Workshop on the Implementation of Logics, Montevideo, Uruguay, pp. 66–77 (2005)
Slaney, J.: FINDER: Finite Domain Enumerator. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 798–801. Springer, Heidelberg (1994)
Suda, M., Weidenbach, C., Wischnewski, P.: On the Saturation of YAGO. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 441–456. Springer, Heidelberg (2010)
Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, ch. 27, pp. 1965–2012. Elsevier (2001)
Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS Version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)
Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38. Springer, Heidelberg (2008)
Zhang, J., Zhang, H.: SEM: a system for enumerating models. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, vol. 1, pp. 298–303. Morgan Kaufmann (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hillenbrand, T., Weidenbach, C. (2013). Superposition for Bounded Domains. In: Bonacina, M.P., Stickel, M.E. (eds) Automated Reasoning and Mathematics. Lecture Notes in Computer Science(), vol 7788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36675-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-36675-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36674-1
Online ISBN: 978-3-642-36675-8
eBook Packages: Computer ScienceComputer Science (R0)