Abstract
Continuous logic extends the multi-valued Łukasiewicz logic by adding a halving operator on propositions. This extension is designed to give a more satisfactory model theory for continuous structures. The semantics of these logics can be given using specialisations of algebraic structures known as hoops and coops. As part of an investigation into the metatheory of propositional continuous logic, we were indebted to Prover9 for finding proofs of important algebraic laws.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anantharaman, S., Bonacina, M.P.: An Application of Automated Equational Reasoning to Many-Valued Logic. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516, pp. 156–161. Springer, Heidelberg (1991)
Arthan, R., Oliva, P.: Hoops, coops and the algebraic semantics of continuous logic (2012), http://arXiv.org/abs/1212.2887v1
Ben Yaacov, I., Pedersen, A.P.: A proof of completeness for continuous first-order logic (2009), http://arxiv.org/0903.4051
Bierman, G.M.: On intuitionistic linear logic. PhD thesis, University of Cambridge Computer Laboratory (December 1993)
Blok, W.J., Ferreirim, I.M.A.: On the structure of hoops. Algebra Universalis 43(2-3), 233–257 (2000)
Bonacina, M.P.: Problems in Łukasiewicz logic. Newsletter of the Association for Automated Reasoning 18, 5–12 (1991), http://www.AARInc.org
Büchi, J.R., Owens, T.M.: Complemented monoids and hoops (1975) (Unpublished manuscript)
Chang, C.C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1958)
Chang, C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Amer. Math. Soc. 93, 74–80 (1959)
Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers (1998)
Harris, K., Fitelson, B.: Distributivity in \({\L}_{\aleph_0}\) and other sentential logics. J. Autom. Reasoning 27, 141–156 (2001)
Hay, L.S.: Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28, 77–86 (1963)
Henson, C.W., Iovino, J.: Ultraproducts in analysis. In: Analysis and Logic. London Mathematical Society Lecture Notes, vol. 262, pp. 1–113. Cambridge University Press (2002)
Köhler, P.: Brouwerian semilattices. Trans. Amer. Math. Soc. 268, 103–126 (1981)
Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. C. R. Soc. Sc. Varsovie 23, 30–50 (1930)
McCune, W.: Prover9 and Mace4 (2005-2010), http://www.cs.unm.edu/~mccune/prover9/
Raftery, J.G.: On the variety generated by involutive pocrims. Rep. Math. Logic 42, 71–86 (2007)
Slaney, J.K.: More proofs of an axiom of Łukasiewicz. J. Autom. Reasoning 29, 59–66 (2002)
Solovay, R., Arthan, R.D., Harrison, J.: Some new results on decidability for elementary algebra and geometry. Ann. Pure Appl. Logic 163(12), 1765–1802 (2012)
Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)
Veroff, R., Spinks, M.: On a homomorphism property of hoops. Bulletin of the Section of Logic 33(3), 135–142 (2004)
Wos, L.: New challenge problem in sentential calculus. Newsletter of the Association for Automated Reasoning 16, 7–8 (1990), http://www.AARInc.org
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Arthan, R., Oliva, P. (2013). (Dual) Hoops Have Unique Halving. In: Bonacina, M.P., Stickel, M.E. (eds) Automated Reasoning and Mathematics. Lecture Notes in Computer Science(), vol 7788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36675-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-36675-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36674-1
Online ISBN: 978-3-642-36675-8
eBook Packages: Computer ScienceComputer Science (R0)