Skip to main content

On Valid Inequalities for Quadratic Programming with Continuous Variables and Binary Indicators

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

  • 1806 Accesses

Abstract

In this paper we study valid inequalities for a set that involves a continuous vector variable x ∈ [0,1]n, its associated quadratic form x x T, and binary indicators on whether or not x > 0. This structure appears when deriving strong relaxations for mixed integer quadratic programs (MIQPs). Valid inequalities for this set can be obtained by lifting inequalities for a related set without binary variables (QPB), that was studied by Burer and Letchford. After closing a theoretical gap about QPB, we characterize the strength of different classes of lifted QPB inequalities. We show that one class, lifted-posdiag-QPB inequalities, capture no new information from the binary indicators. However, we demonstrate the importance of the other class, called lifted-concave-QPB inequalities, in two ways. First, all lifted-concave-QPB inequalities define the relevant convex hull for the case of convex quadratic programming with indicators. Second, we show that all perspective constraints are a special case of lifted-concave-QPB inequalities, and we further show that adding the perspective constraints to a semidefinite programming relaxation of convex quadratic programs with binary indicators results in a problem whose bound is equivalent to the recent optimal diagonal splitting approach of Zheng et al.. Finally, we show the separation problem for lifted-concave-QPB inequalities is tractable if the number of binary variables involved in the inequality is small. Our study points out a direction to generalize perspective cuts to deal with non-separable nonconvex quadratic functions with indicators in global optimization. Several interesting questions arise from our results, which we detail in our concluding section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Mathematical Programming, Series B (2012)

    Google Scholar 

  2. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional quadratic forms. Mathematical Programming 124(1-2), 33–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsimas, D., Shioda, R.: Algorithm for cardinality-constrained quadratic optimization. Computational Optimization and Applications 43(1), 1–22 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Mathematical Programming, Series A 74(2), 121–140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Mathematical Programming, Series A 131, 381–401 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Billionnet, A., Elloumi, S., Plateau, M.-C.: Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method. Discrete Applied Mathematics 157, 1185–1197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borchers, B.: CSDP, a C library for semidefinite programming. Optimization Methods and Software 11(1), 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  8. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs. Mathematical Programming 120, 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Math. Prog. Comp. 2(1), 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burer, S., Letchford, A.N.: On nonconvex quadratic programming with box constriants. SIAM J. Optim. 20(2), 1073–1089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Mathematical Programming 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Ambrosio, C., Linderoth, J., Luedtke, J.: Valid Inequalities for the Pooling Problem with Binary Variables. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 117–129. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Dong, H., Linderoth, J.: On valid inequalities for quadratic programming with continuous variables and binary indicators. Optimization Online (August 2012)

    Google Scholar 

  14. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0-1 mixed integer programs. Mathematical Programming 106, 225–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frangioni, A., Gentile, C.: Solving nonlinear single-unit commitment problems with ramping constraints. Operations Research 54(4), 767–775 (2006)

    Article  MATH  Google Scholar 

  16. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparable MIQP. Operations Research Letters 35(2), 181–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programming with indicator variables. Mathematical Programming, Series B 124(1-2), 183–205 (2010)

    Article  MATH  Google Scholar 

  18. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: Lee, J., Leyffer, S. (eds.) IMA Volumes in Mathematics and its Applications, vol. 154, pp. 61–92. Springer (2012)

    Google Scholar 

  19. Gao, J., Li, D.: Cardinality constraint linear-quadratic optimal control. IEEE Transactions on Automatic Control 56(8), 1936–1941 (2011)

    Article  Google Scholar 

  20. Löfberg, J.: Yalmip: A toolbox for modeling and optimization in matalb. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

    Google Scholar 

  21. Miller, A.: Subset Selection in Regression. Monographs in Statistics and Applied Probability, vol. 40. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  22. Padberg, M.: The Boolean quadric polytope: some characteristics, facets and relatives. Math. Programming, Series B 45(1), 139–172 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Papageorgiou, D.J., Toriello, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Fixed-charge transportation with product blending. Transportation Science 46(2), 281–295 (2012)

    Article  Google Scholar 

  24. Sherali, H.D., Adams, W.P.: A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Nonconvex Optimization and its Applications, vol. 31. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  25. Wei, D., Oppenheim, A.V.: A branch-and-bound algorithm for quadratically-constrained sparse filter design. IEEE Transactions on Signal Processing (2012) (to appear)

    Google Scholar 

  26. Zheng, X., Sun, X., Li, D.: Improving the performance of MIQP solvers for quadratic programs with cardinality and minimum threshold constraints: A semidefinite program approach (November 2010) (manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, H., Linderoth, J. (2013). On Valid Inequalities for Quadratic Programming with Continuous Variables and Binary Indicators. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics