Skip to main content

Thrifty Algorithms for Multistage Robust Optimization

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

  • 1686 Accesses

Abstract

We consider a class of multi-stage robust covering problems, where additional information is revealed about the problem instance in each stage, but the cost of taking actions increases. The dilemma for the decision-maker is whether to wait for additional information and risk the inflation, or to take early actions to hedge against rising costs. We study the “k-robust” uncertainty model: in each stage i = 0, 1, …, T, the algorithm is shown some subset of size k i that completely contains the eventual demands to be covered; here k 1 > k 2 > ⋯ > k T which ensures increasing information over time. The goal is to minimize the cost incurred in the worst-case possible sequence of revelations.

For the multistage k-robust set cover problem, we give an O(logm + logn)-approximation algorithm, nearly matching the \(\Omega\left(\log n+\frac{\log m}{\log\log m}\right)\) hardness of approximation [4] even for T = 2 stages. Moreover, our algorithm has a useful “thrifty” property: it takes actions on just two stages. We show similar thrifty algorithms for multi-stage k-robust Steiner tree, Steiner forest, and minimum-cut. For these problems our approximation guarantees are O( min { T, logn, logλ max }), where λ max is the maximum inflation over all the stages. We conjecture that these problems also admit O(1)-approximate thrifty algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Mathematical Programming 99(2), 351–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Review 53(3), 464–501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may: Approximation algorithms for demand-robust covering problems. In: FOCS, pp. 367–378 (2005)

    Google Scholar 

  4. Feige, U., Jain, K., Mahdian, M., Mirrokni, V.S.: Robust Combinatorial Optimization with Exponential Scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 439–453. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Golovin, D., Goyal, V., Ravi, R.: Pay Today for a Rainy Day: Improved Approximation Algorithms for Demand-Robust Min-Cut and Shortest Path Problems. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 206–217. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Gupta, A., Nagarajan, V., Ravi, R.: Thresholded Covering Algorithms for Robust and Max-min Optimization. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 262–274. Springer, Heidelberg (2010) Full version: CoRR abs/0912.1045

    Chapter  Google Scholar 

  7. Gupta, A., Pál, M., Ravi, R., Sinha, A.: What About Wednesday? Approximation Algorithms for Multistage Stochastic Optimization. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX and RANDOM 2005. LNCS, vol. 3624, pp. 86–98. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Khandekar, R., Kortsarz, G., Mirrokni, V.S., Salavatipour, M.R.: Two-Stage Robust Network Design with Exponential Scenarios. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 589–600. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Swamy, C., Shmoys, D.B.: Sampling-based approximation algorithms for multistage stochastic optimization. SIAM J. Comput. 41(4), 975–1004 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, A., Nagarajan, V., Vazirani, V.V. (2013). Thrifty Algorithms for Multistage Robust Optimization. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics