Abstract
We consider a class of multi-stage robust covering problems, where additional information is revealed about the problem instance in each stage, but the cost of taking actions increases. The dilemma for the decision-maker is whether to wait for additional information and risk the inflation, or to take early actions to hedge against rising costs. We study the “k-robust” uncertainty model: in each stage i = 0, 1, …, T, the algorithm is shown some subset of size k i that completely contains the eventual demands to be covered; here k 1 > k 2 > ⋯ > k T which ensures increasing information over time. The goal is to minimize the cost incurred in the worst-case possible sequence of revelations.
For the multistage k-robust set cover problem, we give an O(logm + logn)-approximation algorithm, nearly matching the \(\Omega\left(\log n+\frac{\log m}{\log\log m}\right)\) hardness of approximation [4] even for T = 2 stages. Moreover, our algorithm has a useful “thrifty” property: it takes actions on just two stages. We show similar thrifty algorithms for multi-stage k-robust Steiner tree, Steiner forest, and minimum-cut. For these problems our approximation guarantees are O( min { T, logn, logλ max }), where λ max is the maximum inflation over all the stages. We conjecture that these problems also admit O(1)-approximate thrifty algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solutions of uncertain linear programs. Mathematical Programming 99(2), 351–376 (2004)
Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Review 53(3), 464–501 (2011)
Dhamdhere, K., Goyal, V., Ravi, R., Singh, M.: How to pay, come what may: Approximation algorithms for demand-robust covering problems. In: FOCS, pp. 367–378 (2005)
Feige, U., Jain, K., Mahdian, M., Mirrokni, V.S.: Robust Combinatorial Optimization with Exponential Scenarios. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 439–453. Springer, Heidelberg (2007)
Golovin, D., Goyal, V., Ravi, R.: Pay Today for a Rainy Day: Improved Approximation Algorithms for Demand-Robust Min-Cut and Shortest Path Problems. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 206–217. Springer, Heidelberg (2006)
Gupta, A., Nagarajan, V., Ravi, R.: Thresholded Covering Algorithms for Robust and Max-min Optimization. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 262–274. Springer, Heidelberg (2010) Full version: CoRR abs/0912.1045
Gupta, A., Pál, M., Ravi, R., Sinha, A.: What About Wednesday? Approximation Algorithms for Multistage Stochastic Optimization. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX and RANDOM 2005. LNCS, vol. 3624, pp. 86–98. Springer, Heidelberg (2005)
Khandekar, R., Kortsarz, G., Mirrokni, V.S., Salavatipour, M.R.: Two-Stage Robust Network Design with Exponential Scenarios. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 589–600. Springer, Heidelberg (2008)
Swamy, C., Shmoys, D.B.: Sampling-based approximation algorithms for multistage stochastic optimization. SIAM J. Comput. 41(4), 975–1004 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gupta, A., Nagarajan, V., Vazirani, V.V. (2013). Thrifty Algorithms for Multistage Robust Optimization. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-36694-9_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36693-2
Online ISBN: 978-3-642-36694-9
eBook Packages: Computer ScienceComputer Science (R0)