Abstract
Let \(\textbf{L}^{m}\) be the Lorentz cone in ℝm. Given \(A \in {\mathbb{Q}}^{m \times n_1}\), \(B \in {\mathbb{Q}}^{m \times n_2}\) and b ∈ ℚm, a simple second order conic mixed-integer set (SOCMIS) is a set of the form \(\{(x,y)\in {\mathbb{Z}}^{n_1} \times {\mathbb{R}}^{n_2}\,|\,\ Ax +By -b \in \textbf{L}^{m}\}\). We show that there exists a polynomial-time algorithm to check the closedness of the convex hull of simple SOCMISs. Moreover, in the special case of pure integer problems, we present sufficient conditions, that can be checked in polynomial-time, to verify the closedness of intersection of simple SOCMISs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Meyer, R.R.: On the existence of optimal solutions of integer and mixed-integer programming problems. Mathematical Programming 7, 223–225 (1974)
Dey, S., Morán, R.D.: Some properties of convex hulls of integer points contained in general convex sets. Mathematical Programming, 1–20, doi:10.1007/s10107-012-0538-7
Bertsimas, D., Weismantel, R.: Optimization over integers, vol. 13. Dynamic Ideas (2005)
Edmonds, J.: Systems of distinct representatives and linear algebra. Journal of Research of the National Bureau of Standards (B) 71, 241–245 (1967)
Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics. Springer (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morán Ramírez, D.A., Dey, S.S. (2013). A Polynomial-Time Algorithm to Check Closedness of Simple Second Order Mixed-Integer Sets. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-36694-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36693-2
Online ISBN: 978-3-642-36694-9
eBook Packages: Computer ScienceComputer Science (R0)