Skip to main content

A Polynomial-Time Algorithm to Check Closedness of Simple Second Order Mixed-Integer Sets

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

  • 1661 Accesses

Abstract

Let \(\textbf{L}^{m}\) be the Lorentz cone in ℝm. Given \(A \in {\mathbb{Q}}^{m \times n_1}\), \(B \in {\mathbb{Q}}^{m \times n_2}\) and b ∈ ℚm, a simple second order conic mixed-integer set (SOCMIS) is a set of the form \(\{(x,y)\in {\mathbb{Z}}^{n_1} \times {\mathbb{R}}^{n_2}\,|\,\ Ax +By -b \in \textbf{L}^{m}\}\). We show that there exists a polynomial-time algorithm to check the closedness of the convex hull of simple SOCMISs. Moreover, in the special case of pure integer problems, we present sufficient conditions, that can be checked in polynomial-time, to verify the closedness of intersection of simple SOCMISs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Meyer, R.R.: On the existence of optimal solutions of integer and mixed-integer programming problems. Mathematical Programming 7, 223–225 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dey, S., Morán, R.D.: Some properties of convex hulls of integer points contained in general convex sets. Mathematical Programming, 1–20, doi:10.1007/s10107-012-0538-7

    Google Scholar 

  3. Bertsimas, D., Weismantel, R.: Optimization over integers, vol. 13. Dynamic Ideas (2005)

    Google Scholar 

  4. Edmonds, J.: Systems of distinct representatives and linear algebra. Journal of Research of the National Bureau of Standards (B) 71, 241–245 (1967)

    MathSciNet  MATH  Google Scholar 

  5. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics. Springer (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morán Ramírez, D.A., Dey, S.S. (2013). A Polynomial-Time Algorithm to Check Closedness of Simple Second Order Mixed-Integer Sets. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics