Skip to main content

The Euclidean k-Supplier Problem

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7801))

Abstract

In the k-supplier problem, we are given a set of clients C and set of facilities F located in a metric (C ∪ F, d), along with a bound k. The goal is to open a subset of k facilities so as to minimize the maximum distance of a client to an open facility, i.e., min S ⊆ F: |S| = k max v ∈ C d(v,S), where d(v,S) =  min u ∈ S d(v,u) is the minimum distance of client v to any facility in S. We present a \(1+\sqrt{3}<2.74\) approximation algorithm for the k-supplier problem in Euclidean metrics. This improves the previously known 3-approximation algorithm [9] which also holds for general metrics (where it is known to be tight). It is NP-hard to approximate Euclidean k-supplier to better than a factor of \(\sqrt{7}\approx 2.65\), even in dimension two [5]. Our algorithm is based on a relation to the edge cover problem. We also present a nearly linear O(n·log2 n) time algorithm for Euclidean k-supplier in constant dimensions that achieves an approximation ratio of 2.965, where n = |C ∪ F|.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arora, S.: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. In: FOCS, pp. 554–563 (1997)

    Google Scholar 

  2. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45(6), 891–923 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, T.M.: Approximate nearest neighbor queries revisited. Discrete & Computational Geometry 20(3), 359–373 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarkson, K.L.: An algorithm for approximate closest-point queries. In: Symposium on Computational Geometry, SoCG, pp. 160–164 (1994)

    Google Scholar 

  5. Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: STOC, pp. 434–444 (1988)

    Google Scholar 

  6. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MATH  Google Scholar 

  7. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In: STOC, pp. 291–300 (2004)

    Google Scholar 

  8. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  10. Kolliopoulos, S.G., Rao, S.: A nearly linear-time approximation scheme for the Euclidean k-median problem. SIAM J. Comput. 37(3), 757–782 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Micali, S., Vazirani, V.V.: An \(O(\sqrt{V} E)\) Algorithm for Finding Maximum Matching in General Graphs. In: FOCS, pp. 17–27 (1980)

    Google Scholar 

  12. Mucha, M., Sankowski, P.: Maximum matchings in planar graphs via gaussian elimination. Algorithmica 45(1), 3–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schrijver, A.: Combinatorial optimization. Springer, New York (2003)

    MATH  Google Scholar 

  14. Vaidya, P.M.: Approximate minimum weight matching on points in k-dimensional space. Algorithmica 4(4), 569–583 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vaidya, P.M.: Geometry helps in matching. SIAM J. Comput. 18(6), 1201–1225 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nagarajan, V., Schieber, B., Shachnai, H. (2013). The Euclidean k-Supplier Problem. In: Goemans, M., Correa, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2013. Lecture Notes in Computer Science, vol 7801. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36694-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36694-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36693-2

  • Online ISBN: 978-3-642-36694-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics