Abstract
We provide a subclass of parametric timed automata (PTA) that we can actually and efficiently analyze, and we argue that it retains most of the practical usefulness of PTA. The currently most useful known subclass of PTA, L/U automata, has a strong syntactical restriction for practical purposes, and we show that the associated theoretical results are mixed. We therefore advocate for a different restriction scheme: since in classical timed automata, real-valued clocks are always compared to integers for all practical purposes, we also search for parameter values as bounded integers. We show that the problem of the existence of parameter values such that some TCTL property is satisfied is PSPACE-complete. In such a setting, we can also of course synthesize all the values of parameters and we give symbolic algorithms, for reachability and unavoidability properties, to do it efficiently, i.e., without an explicit enumeration. This also has the practical advantage of giving the result as symbolic constraints between the parameters. We finally report on a few experimental results to illustrate the practical usefulness of the approach.
This work was partially funded by the ANR national research program ImpRo (ANR-2010-BLAN-0317).
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information and Computation 104(1), 2–34 (1993)
Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Science 126(2), 183–235 (1994)
Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM Symposium on Theory of Computing, pp. 592–601 (1993)
André, E., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. In: RP Workshop on Reachability Problems, Liverpool, U.K., vol. 223, pp. 29–46 (2008)
Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. on Soft. Eng. 17(3), 259–273 (1991)
Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. Formal Methods in System Design 35(2), 121–151 (2009)
Bruyère, V., Raskin, J.-F.: Real-time model-checking: Parameters everywhere. Logical Methods in Computer Science 3(1), 1–30 (2007)
Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Time state space analysis of real-time preemptive systems. IEEE Trans. on Soft. Eng. 30(2), 97–111 (2004)
Doyen, L.: Robust parametric reachability for timed automata. Information Processing Letters 102(5), 208–213 (2007)
Henzinger, T.A., Ho, P.-H., Wong-toi, H.: Hytech: A model checker for hybrid systems. Software Tools for Technology Transfer 1, 460–463 (1997)
Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inform. and Computation 111(2), 193–244 (1994)
Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model checking of timed automata. Journal of Logic and Algebraic Programming 52-53, 183–220 (2002)
Jurdziński, M., Trivedi, A.: Reachability-Time Games on Timed Automata. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 838–849. Springer, Heidelberg (2007)
Larsen, K.G., Pettersson, P., Yi, W.: Model-Checking for Real-Time Systems. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)
Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: A Parametric Model-Checker for Petri Nets with Stopwatches. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009)
Miller, J.S.: Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid Automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000)
Minsky, M.: Computation: Finite and Infinite Machines. Prentice Hall (1967)
Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)
Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch Petri nets. Journal of Universal Computer Science 15(17), 3273–3304 (2009)
Virbitskaite, I., Pokozy, E.: Parametric Behaviour Analysis for Time Petri Nets. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 134–140. Springer, Heidelberg (1999)
Wang, F.: Parametric timing analysis for real-time systems. Information and Computation 130(2), 131–150 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jovanović, A., Lime, D., Roux, O.H. (2013). Integer Parameter Synthesis for Timed Automata. In: Piterman, N., Smolka, S.A. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2013. Lecture Notes in Computer Science, vol 7795. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36742-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-36742-7_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36741-0
Online ISBN: 978-3-642-36742-7
eBook Packages: Computer ScienceComputer Science (R0)