
AppGuard – Enforcing User Requirements
on Android Apps

Michael Backes1,2, Sebastian Gerling1, Christian Hammer1, Matteo Maffei1,
and Philipp von Styp-Rekowsky1

1 Saarland University, Saarbrücken, Germany
2 Max Planck Institute for Software Systems (MPI-SWS)

Abstract. The success of Android phones makes them a prominent tar-
get for malicious software, in particular since the Android permission sys-
tem turned out to be inadequate to protect the user against security and
privacy threats. This work presents AppGuard, a powerful and flexible
system for the enforcement of user-customizable security policies on un-
trusted Android applications. AppGuard does not require any changes to
a smartphone’s firmware or root access. Our system offers complete me-
diation of security-relevant methods based on callee-site inline reference
monitoring. We demonstrate the general applicability of AppGuard by
several case studies, e.g., removing permissions from overly curious apps
as well as defending against several recent real-world attacks on Android
phones. Our technique exhibits very little space and runtime overhead.
AppGuard is publicly available, has been invited to the Samsung Apps
market, and has had more than 500,000 downloads so far.

1 Introduction

Mobile devices nowadays store a plethora of sensitive information about us –
both private and business-related. Usually, this information can be accessed in
predefined locations, such as address books or photo folders, and is thus easily
locatable by an attacker. Most of these locations, however, lack comprehensive
access control and protection mechanisms. When users install a new app on
Android, they have no choice but to grant an app all requested permissions at
install time, and these permissions cannot be revoked later on. At the same time,
these permissions are coarse-grained and their impact is hard to understand for
the average user. In the past, several incidents have been reported where private
information was deliberately leaked to external servers. Even widely used major
apps like Twitter and WhatsApp used to clandestinely send the phone’s whole
address book to their servers to mine for possible contacts (for iOS, similar
behavior was revealed, e.g., for the Facebook app).

In order to overcome this unsatisfactory situation, this paper presents App-
Guard, a tool based on inline reference monitoring (IRM) [4,3] that allows the
user to enforce fine-grained security and privacy policies on third-party apps.
These policies enforced by AppGuard restrict the outreach of vulnerabilities
both in third-party applications and the operating system. In short, the IRM

N. Piterman and S. Smolka (Eds.): TACAS 2013, LNCS 7795, pp. 543–548, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



544 M. Backes et al.

algorithm proceeds in two steps. First, app binaries are rewritten to invoke at
runtime a security monitor before each security-relevant program operation, usu-
ally before each function call to the Android system libraries. Second, the secu-
rity monitor dynamically checks whether any of the currently enforced security
policies allows the attempted operation, and then either grants the execution
or executes alternative code (e.g., to return a mock value to prevent the app’s
termination due to an exception). Since IRM only affects the app binary and not
the operating system, AppGuard allows for enforcing policies without rooting
phones or changing the operating system.

AppGuard is deployed as a stand-alone app, has been installed on about
500,000 phones so far, and will be soon released to the Samsung Apps market
after an explicit invitation from Samsung. The experimental evaluation and case
studies discussed in this paper demonstrate the effectiveness of our approach:
AppGuard exhibits very little overhead in terms of space and runtime, and it
can be used to revoke permissions of excessively curious apps, to enforce complex
policies, and to prevent several recent real-world attacks on Android phones.

Although several approaches for enforcing policies in Android based on IRM
have recently been presented in the literature [7,2], AppGuard is the only IRM
based security tool that has been deployed on a large scale and provides a fully
automated on-the-phone instrumentation for third-party apps. In the remainder
of this paper, we focus on the architecture and on usability and deployment
aspects of the tool: for more details on the IRM algorithm and an extensive
discussion of the related work, we refer to [1].

2 AppGuard

Architecture. AppGuard uses caller-site rewriting to inline the reference mon-
itor into existing third-party apps. Fig. 1 provides an overview of its components.
Policies. AppGuard provides a set of built-in security and privacy policies. The
tool, in particular, provides general purpose policies that aim at the revocation
and restriction of critical Android permissions, such as the Internet-, Contacts-
and SendSMS-permission. The Internet policy, for example, provides, besides
a general on/off switch option, the possibility to specify a set of servers an
app is allowed to connect to. The current version of AppGuard contains 24
different policies in total. Security policies are specified in an aspect-oriented
programming style and include a detailed specification of all function calls that
are to be controlled by the security monitor (cf. Section 3).

Rewriter. Policies constitute the working basis for the rewriting component to
inline the specified checks in front of function calls. The rewriter takes an existing
application package (.apk file), extracts the classes.dex file, and disassembles
it. After analyzing the converted assembly code, the rewriter merges the security
checks specified by the policy into the existing application code. Finally, it re-
assembles the classes.dex file and repackages the apk file. Our implementation
handles both reflective JAVA calls and virtual methods.



AppGuard – Enforcing User Requirements on Android Apps 545

Policies 

Management Rewriter Untrusted 
App 

Monitor

Untrusted 
App 

logging 

config 

Fig. 1. Architecture of AppGuard Fig. 2. Permission revocation policies (up-
per part) and the event log (lower part)

Management. Our management component offers the possibility to select a set
of predefined policies and to switch single policies on/off on the fly.
Monitor. The monitor is responsible for the actual enforcement of security
policies. It tracks the state of the program execution and decides based on the
policy configuration whether a security-relevant operation is allowed or not.

Deployment. A major design decision for AppGuard was its development as a
standalone app. This is a crucial requirement for a broad deployment on existing
smartphones, since the average user of smartphones is not able or willing to
“root” the smartphone or to modify the operating system. As Android enforces
app isolation by running every app in its own dedicated sandbox, there is no
direct possibility to modify the code of other apps, which, however, is required
for inline reference monitoring. We solve this problem by leveraging the fact
that Android stores app packages in a world-readable location of the filesystem.
Thereby, AppGuard can read the .apk packages of installed apps and start the
rewriting process. In order to install the modified (secured) app, the user is asked
to uninstall the original app and to confirm the installation of the secured app
instead. This is due to the fact that, for security reasons, Android does not allow
apps to silently uninstall other apps.

Since our rewriting process modifies the original app package, the package
signature becomes invalid. Therefore, we have to re-sign the secured application
with a new key (usually one key per app developer) such that the original app be-
havior is preserved. For example, Android makes it possible for apps signed with
the same key to access each other’ s data: the signing mechanism implemented
in AppGuard preserves this behavior.

Usability. AppGuard is designed for ease-of-use and does not require any spe-
cific security knowledge. In the following, we briefly outline the typical workflow



546 M. Backes et al.

experienced by the user. Whenever a new app is installed on the phone, App-
Guard prompts the user to secure the new app. Clicking the notification takes the
user to the initial screen for the app instrumentation, which explains the 3-step
rewriting process: (i) scanning and rewriting of the target app, (ii) uninstallation
of the original app, and (iii) installation of the modified app. Once the modified
app is installed, AppGuard allows the user to grant or revoke individual permis-
sions and configure predefined security policies. For example, the user can specify
which hosts the app is allowed to connect to. Furthermore, AppGuard keeps a
log of all security-relevant operations performed by an app, providing insights
into the app behavior and enabling the user to make informed decisions about
the policy configuration. Finally, AppGuard includes an on-the-phone manual
and gives an overview of installed and secured apps.

Current Release. AppGuard is implemented as a stand-alone app for Android
and is purely written in Java. Our tool was first released in July 2012 and its
current code base consists of approx. 6500 lines of code. It builds upon the dexlib1

library, which is used for manipulating App binaries (dex files). A prototype of
AppGuard was originally implemented by researchers at Saarland University [1].
The currently deployed version is based on that work, and it has been built
and is maintained by a spin-off company called Backes SRT. The app has been
evaluated on a number of real world applications from Google’s official app
market Google Play (cf. Section 3 for details on some of our case studies).

AppGuard is available for free and supports all Android versions starting from
Android 3.0. The application binary can be downloaded from several websites2.
It has achieved within a few months a large user basis, especially in Europe.
Since its first release, it received significant attention in the German media (e.g.,
a report within ARD Tagesschau, a news transmission of the first German TV
channel). The current version has been downloaded more than 500,000 times
and the downloads are increasing steadily. Recently, we have been invited to put
AppGuard into Samsung’s Apps market where Samsung maintains selected apps
especially for their own smartphones.

Upcoming Release. Besides the previously described functionalities, the up-
coming release of AppGuard implements a wider range of policies (e.g., for redi-
recting HTTP connections to HTTPS and for preventing Runtime.Exec() calls,
which are commonly used in recent Android malware). Further, the new re-
lease takes care of updating secured apps as the previously described re-signing
procedure renders the updates within Google Play impossible.

Limitations. AppGuard monitors both direct Java calls and calls from native
code to Java methods. However, it does not monitor function calls inside of
native libraries. In case native code is present, it informs the user and asks
whether native code should be executed. According to Zhou et al. [8], only less
than 5% of all apps include native libraries.
1 Part of the smali disassembler for Android by Ben Gruver [6]
2 http://www.chip.de/downloads/SRT-AppGuard-Android-App_56552141.html

http://www.heise.de/download/srt-appguard-1187469.html

http://www.chip.de/downloads/SRT-AppGuard-Android-App_56552141.html
http://www.heise.de/download/srt-appguard-1187469.html 


AppGuard – Enforcing User Requirements on Android Apps 547

Table 1. Inliner evaluation: sizes of apk file, classes.dex, inlined classes.dex, diff. of
dex file, # of total and changed instructions, inlining time on the phone

App (Version) Size [Kb] Instructions Time [sec]
Apk Dex Inl Diff Total Chg Phone

Angry Birds (2.0.2) 15018 994 1038 +44 79311 100 43.4
Endomondo (7.0.2) 3263 1635 1680 +45 134452 88 23.0
Facebook (1.8.3) 4013 2695 2744 +48 224285 218 47.3
PPXIU (1.0)

(infected w/ YZHCSMS) 856 793 839 +46 114427 120 19.9

Super Guitar Solo (1.0.1)
(infected w/ DroidDream) 1617 120 161 +41 8641 18 4.5

Twitter (3.0.1) 2218 764 813 +48 105594 107 16.7
Wetter.com (1.3.1) 4296 958 1000 +43 89655 36 15.7

3 Performance Evaluation and Case Studies

This section presents the results of the performance evaluation that we conducted
on a Google Galaxy Nexus smartphone (1.2 GHz CPU, 1GB RAM) with Android
4.0.4. and discusses some of the case studies conducted with AppGuard.

Table 1 provides statistics on inlining a representative set of apps with App-
Guard. We observed a negligible increase in filesize and reasonable inlining times.
Besides, we evaluated the runtime overhead introduced by AppGuard through
micro-benchmarks (cf. Table 2). The overhead varies depending on the mea-
sured function call, but overall we did not recognize any noticeable slowdown.
Performance critical apps like games and video players are usually not negatively
affected by this slowdown since most time critical computations are performed
in native libraries where no security critical information is involved. Our studies
indicate that monitored API functions are not frequently called (e.g. in loops).

We evaluated AppGuard in several case studies based on real world applications
and successfully enforced different classes of security and privacy policies. Let us
consider as an example the Twitter app that used to upload the user’s address
book to the Twitter servers without user consent: revoking the Contacts permis-
sion preserves all major functionalities (the find friends function is, of course, lim-
ited), but it prevents the privacy leak. Following the same approach AppGuard
can also successfully curb the impact of malware. The YZHCSMS malware, for
example, sends SMS to premium numbers, which can be prevented by revoking
the SendSMS permission. By means of the Wetter.com app, we demonstrate the
enforcement of a more fine-grained policy by only allowing connections to the

Table 2. Runtime comparison with micro-benchmarks for function calls in unmodified
apps and inlined apps with policies disabled and enabled. The runtime overhead is
presented for the inlined app with disabled policies.

Function Call Original Inlined App Overhead
App Pol. disabled Pol. enabled

Socket-><init>() 0.2879 ms 0.3022 ms 0.0248 ms 5.0%
ContentResolver->query() 10.484 ms 11.138 ms 0.1 ms 6.2%
Camera->open() 150.8 ms 152.36 ms 0.6 ms 1.0%



548 M. Backes et al.

wetter.com servers, which are used to retrieve the current weather forecast. By
blocking all other network connections, the app no longer displays in-app adver-
tisements. Furthermore, AppGuard is able to mitigate weaknesses both in third
party apps and in the OS itself. The Endomondo Sports Tracker, for example, leaks
the authentication token via unsecured HTTP connections. AppGuard can suc-
cessfully prevent this leakage by enforcing the usage of HTTPS (if supported). An
example of an OS vulnerability in Android is the lack of access control mechanisms
for the Android photo storage, which is demonstrated by the proof-of-concept ex-
ploit implemented in the (Evil)Tea Timer app [5]. AppGuard successfully fixes
this vulnerability by allowing the user to control the access to her private photos.
Finally, many malware authors try to use binary root exploits to gain elevated
privileges (e.g. DroidDream). By monitoring API-calls like Runtime.exec(),
AppGuard can also prevent this type of attacks.

4 Conclusion
This work presents AppGuard, a powerful and flexible system for the enforcement
of user-defined security policies on untrusted Android applications. AppGuard is
based on IRM and does not require any changes to a smartphone’s firmware or
root access. We demonstrated the feasibility of our approach through an exper-
imental evaluation and several case studies. We take the size of the current user
basis of AppGuard as an indication that it tackles a pressing need on Android.

Acknowledgement. This work was supported by the initiative for excellence,
the Emmy Noether program of the German research foundation (DFG) and the
German Federal Ministry of Education and Research (BMBF) within the Center
for IT-Security, Privacy and Accountability (CISPA) at Saarland University.

References
1. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: Appguard

- real-time policy enforcement for third-party applications. Tech. Rep. A/02/2012,
Saarland University, Computer Science (July 2012)

2. Davis, B., Sanders, B., Khodaverdian, A., Chen, H.: I-ARM-Droid: A rewriting
framework for in-app reference monitors for android applications. In: Mobile Secu-
rity Technologies 2012, MoST 2012 (2012)

3. Erlingsson, Ú.: The Inlined Reference Monitor Approach to Security Policy Enforce-
ment. Ph.D. thesis, Cornell University (January 2004)

4. Erlingsson, Ú., Schneider, F.B.: IRM enforcement of java stack inspection. In: Proc.
2002 IEEE Symposium on Security and Privacy (Oakland 2002), pp. 246–255 (2002)

5. Gootee, R.: Evil tea timer (2012), https://github.com/ralphleon/EvilTeaTimer
6. Gruver, B.: Smali: A assembler/disassembler for android’s dex format
7. Jeon, J., Micinski, K.K., Vaughan, J., Fogel, A., Reddy, N., Foster, J., Millstein, T.:

Dr. Android and Mr. Hide: Fine-grained permissions in android applications. In:
ACM CCS Works. on Sec. & Privacy in Smartphones and Mobile Devices (2012)

8. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting
malicious apps in official and alternative Android markets. In: Proc. NDSS 2012
(February 2012)

http://www.cispa-security.de
https://github.com/ralphleon/EvilTeaTimer

	AppGuard – Enforcing User Requirements on Android Apps
	Introduction
	AppGuard
	Performance Evaluation and Case Studies
	Conclusion
	References





