Skip to main content

Tuning the Interval Algorithm for Seeking Pareto Sets of Multi-criteria Problems

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7782))

Included in the following conference series:

Abstract

The paper presents the authors’ effort to optimize a previously developed interval method for solving multi-criteria problems [17]. The idea is to apply heuristics presented, e.g., in [27], [22], [26] and some new ones, to the Pareto set seeking method. Numerical experiments are presented and parallelization of the algorithm is considered. Based on the tuned algorithm, we propose a new approach to interactive multiple criteria decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C-XSC interval library, http://www.xsc.de

  2. Acioly, B.M., Bedregal, B.R.C.: A quasi-metric topology compatible with inclusion monotonicity on interval space. Reliable Computing 3, 305–313 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barichard, V., Hao, J.-K.: A Population and Interval Constraint Propagation Algorithm. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 88–101. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Beelitz, T., Bischof, C.H., Lang, B.: A hybrid subdivision strategy for result-verifying nonlinear solvers. Tech.rep. 04/8, Bergische Universitiät Wuppertal (2004)

    Google Scholar 

  5. Csendes, T.: New subinterval selection criteria for interval global optimization. JOGO 19, 307–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Csendes, T.: Private communication

    Google Scholar 

  7. Fernandez, J., Toth, B.: Obtaining an outer approximation of the efficient set of nonlinear biobjective problems. Journal of Global Optimization 38, 315–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ceberio, M., Modave, F.: Interval-based multicriteria decision making. In: Bouchon-Meunier, B., Coletti, G., Yager, R.R. (eds.) Modern Information Processing: From Theory to Applications. Elsevier (2006)

    Google Scholar 

  9. Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Naval Research Logistics Quarterly 2, 39 (1955)

    Article  MathSciNet  Google Scholar 

  10. Haimes, Y.Y.: Risk Modeling, Assessment and Management. J. Wiley, New York (1998)

    MATH  Google Scholar 

  11. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  12. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)

    Book  MATH  Google Scholar 

  13. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  14. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis (2002), http://www.mat.univie.ac.at/~neum/software/int/notation.ps.gz

  15. Kim, I.Y., de Weck, O.L.: Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Structural and Multidisciplinary Optimization 29, 149–158 (2005)

    Article  Google Scholar 

  16. Kubica, B.J.: Interval methods for solving underdetermined nonlinear equations systems. In: SCAN 2008 Proceedings (2008); Reliable Computing 15, 207–217 (2011)

    Google Scholar 

  17. Kubica, B.J., Woźniak, A.: Interval Methods for Computing the Pareto-front of a Multicriterial Problem. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 1382–1391. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Kubica, B. J., Woźniak, A.: A multi-threaded interval algorithm for the Pareto-front computation in a multi-core environment. Presented at PARA 2008 Conference (2008); accepted for publication in LNCS 6126 (2012)

    Google Scholar 

  19. Kubica, B.J., Woźniak, A.: Optimization of the multi-threaded interval algorithm for the Pareto-set computation. Journal of Telecommunications and Information Technology 1, 70–75 (2010)

    Google Scholar 

  20. Kubica, B.J., Woźniak, A.: Computing Pareto-sets of multi-criteria problems using interval methods. Presented at SCAN 2010 (2010) (unpublished)

    Google Scholar 

  21. Kubica, B.J., Woźniak, A.: Using the Second-Order Information in Pareto-set Computations of a Multi-criteria Problem. In: Jónasson, K. (ed.) PARA 2010, Part II. LNCS, vol. 7134, pp. 137–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Kubica, B.J.: Tuning the Multithreaded Interval Method for Solving Underdetermined Systems of Nonlinear Equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 467–476. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Kubica, B.J.: A class of problems that can be solved using interval algorithms. In: SCAN 2010 Proceedings (2010); Computing 94 (2-4), 271–280 (2012)

    Google Scholar 

  24. McQuaid, M.J., Ong, T.-H., Chen, H., Nunamaker, J.F.: Multidimensional scaling for group memory visualization. Decision Support Systems 27, 163–176 (1999)

    Article  Google Scholar 

  25. Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  26. Pal, L.: Global Optimization Algorithms for Bound Constrained Problems. PhD dissertation, University of Szeged (2010), http://www.emte.siculorum.ro/~pallaszlo/Disszertacio/Disszertacio/Disszertacio_PalLaszlo.pdf

  27. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch-and-bound methods for global optimization. JOGO 7, 183–207 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruetsch, G.R.: An interval algorithm for multi-objective optimization. Structural and Multidisciplinary Optimization 30, 27–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zitzler, E., Laumanns, M., Thiele, M.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou, K., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control. CIMNE, Barcelona (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubica, B.J., Woźniak, A. (2013). Tuning the Interval Algorithm for Seeking Pareto Sets of Multi-criteria Problems. In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36803-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36802-8

  • Online ISBN: 978-3-642-36803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics