Skip to main content

Parametric Optimization of Reconfigurable Designs Using Machine Learning

  • Conference paper
Reconfigurable Computing: Architectures, Tools and Applications (ARC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7806))

Included in the following conference series:

Abstract

This paper presents a novel technique that uses meta- heuristics and machine learning to automate the optimization of design parameters for reconfigurable designs. Traditionally, such an optimization involves manual application analysis as well as model and parameter space exploration tool creation. We develop a Machine Learning Optimizer (MLO) to automate this process. From a number of benchmark executions, we automatically derive the characteristics of the parameter space and create a surrogate fitness function through regression and classification. Based on this surrogate model, design parameters are optimized with meta-heuristics. We evaluate our approach using two case studies, showing that the number of benchmark evaluations can be reduced by up to 85% compared to previously performed manual optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation 6(5), 481–494 (2002)

    Article  Google Scholar 

  2. Ong, Y.S., et al.: Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA 41(4), 689–696 (2003)

    Article  MathSciNet  Google Scholar 

  3. Su, G.: Gaussian process assisted differential evolution algorithm for computationally expensive optimization problems. In: PACIIA, pp. 272–276. IEEE Computer Society (2008)

    Google Scholar 

  4. Guoshao, S., Quan, J.: A cooperative optimization algorithm based on gaussian process and particle swarm optimization for optimizing expensive problems. In: CSO, vol. 2, pp. 929–933 (2009)

    Google Scholar 

  5. Thi, H.A.L., Pham, D.T., Thoai, N.V.: Combination between global and local methods for solving an optimization problem over the efficient set. EJOR 142(2), 258–270 (2002)

    Article  MATH  Google Scholar 

  6. Kurek, M., Luk, W.: Parametric Reconfigurable Designs with Machine Learning Optimizer. In: FPT (2012)

    Google Scholar 

  7. Pilato, C., et al.: Improving evolutionary exploration to area-time optimization of FPGA designs. J. Syst. Archit. 54(11), 1046–1057 (2008)

    Article  Google Scholar 

  8. Seeger, M.: Gaussian processes for machine learning. International Journal of Neural Systems 14, 69–106 (2004)

    Article  Google Scholar 

  9. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  10. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  11. Van Den Bergh, F.: An analysis of particle swarm optimizers. Ph.D. dissertation, University of Pretoria, South Africa (2002)

    Google Scholar 

  12. Tse, A.H.T., Chow, G.C.T., Jin, Q., Thomas, D.B., Luk, W.: Optimising Performance of Quadrature Methods with Reduced Precision. In: Choy, O.C.S., Cheung, R.C.C., Athanas, P., Sano, K. (eds.) ARC 2012. LNCS, vol. 7199, pp. 251–263. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Becker, T., Luk, W., Cheung, P.Y.K.: Parametric Design for Reconfigurable Software-Defined Radio. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds.) ARC 2009. LNCS, vol. 5453, pp. 15–26. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurek, M., Becker, T., Luk, W. (2013). Parametric Optimization of Reconfigurable Designs Using Machine Learning. In: Brisk, P., de Figueiredo Coutinho, J.G., Diniz, P.C. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2013. Lecture Notes in Computer Science, vol 7806. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36812-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36812-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36811-0

  • Online ISBN: 978-3-642-36812-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics