Abstract
Usually a lot of experiments are often required in order to tune population-based algorithms, designed for solving difficult optimization problems. Individial features of a particular problem, different parameters of population of individuals, or structure of the algorithm may influence results produced by the system. The paper aims at evaluating experimentally to what extent (if any) different values of the population parameters controlled by the user in a multi-agent system solving instances of Vehicle Routing Problem influence computational results. The reported experiment involved several methods of creating an initial population of solutions and several cooperating agents representing improvement heuristics working in parallel.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alander, J.T.: On optimal population size of genetic algorithms. In: Proceedings of the IEEE Computer Systems and Software Engineering, pp. 65–69 (1992)
Aydin, M.E., Fogarty, T.C.: Teams of autonomous agents for job-shop scheduling problems: An Experimental Study. Journal of Intelligent Manufacturing 15(4), 455–462 (2004)
Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: JADE-Based A-Team as a Tool for Implementing Population-Based Algorithms. In: Proceedings of IEEE Intelligent Systems Design and Applications Conference, Jinan, vol. 3, pp. 144–149. IEEE Press (2006)
Barbucha, D., Jędrzejowicz, P.: An experimental investigation of the synergetic effect of multiple agents working together in the A-team. Systems Science 34(2), 55–63 (2008)
Barbucha, D., Jędrzejowicz, P.: An Agent-Based Approach to Vehicle Routing Problem. International Journal of Applied Mathematics and Computer Science 4(1), 18–23 (2007)
Barbucha, D., Czarnowski, I., Jędrzejowicz, P., Ratajczak-Ropel, E., Wierzbowska, I.: JABAT Middleware as a Tool for Solving Optimization Problems. In: Nguyen, N.T., Kowalczyk, R. (eds.) Transactions on CCI II. LNCS, vol. 6450, pp. 181–195. Springer, Heidelberg (2010)
Barbucha, D.: Solving the Capacitated Vehicle Routing Problem by a Team of Parallel Heterogeneous Cooperating Agents. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part II. LNCS, vol. 6923, pp. 332–341. Springer, Heidelberg (2011)
Barbucha, D.: Search modes for the cooperative multi-agent system solving the vehicle routing problem. Neurocomputing 88, 13–23 (2012)
Blum, C., Roli, A., Sampels, M.: Hybrid Metaheuristics – An Emerging Approach to Optimization. SCI, vol. 114. Springer, Heidelberg (2008)
Boese, K., Kahng, A., Muddu, S.: A new adaptive multistart technique for combinatorial global optimization. Operations Research Letters 16, 101–113 (1994)
Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)
Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.): Combinatorial optimization. John Wiley, Chichester (1979)
Craig, I.: Blackboard systems. Alex Publishing Co., Norwood (1995)
Crainic, T.G., Toulouse, M.: Explicit and Emergent Cooperation Schemes for Search Algorithms. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II. LNCS, vol. 5313, pp. 95–109. Springer, Heidelberg (2008)
Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)
de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Approach. Springer, London (2002)
Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Dreżewski, R.: A Model of Co-evolution in Multi-agent System. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 314–323. Springer, Heidelberg (2003)
Eglese, R.W.: Simulated annealing: A tool for operational research. European Journal of Operational Research 46, 271–281 (1990)
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)
Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)
Fleurent, C., Ferland, J.A.: Genetic hybrids for the quadratic assignment problem. DIMACS Series, Discr. Math. Theor. Comp. Sci. 16, 173–187 (1994)
Gillett, B.E., Miller, L.R.: A heuristic algorithm for the vehicle dispatch problem. Operations Research 22, 240–349 (1974)
Glover, F., Laguna, M.: Tabu Search. Kluwer, Boston (1997)
Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39, 653–684 (2000)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Golden, B., Stewart, W.: Empirical Analysis of Heuristics. In: Lawler, E., Lenstra, J., Rinnoy, A., Shmoys, D. (eds.) Travelling Salesman Problem, pp. 207–250. Wiley-Interscience, New York (1985)
Greensmith, J., Whitbrook, A., Aickelin, U.: Artificial Immune Systems. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146. Springer (2010)
Hertz, A., Kobler, D.: A framework for the description of evolutionary algorithms. European Journal of Operational Research 126, 1–12 (2000)
Holland, J.H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)
Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Societe Vaudoise des Sciences Naturelles 37, 547–579 (1901)
Jędrzejowicz, P.: A-Teams and Their Applications. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 36–50. Springer, Heidelberg (2009)
Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems 1, 7–38 (1998)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
Kisiel-Dorohinicki, M.: Agent-Oriented Model of Simulated Evolution. In: Grosky, W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 253–261. Springer, Heidelberg (2002)
Koumousis, V.K., Katsaras, C.P.: A sawtooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Transactions on Evolutionary Computation 10(1), 19–28 (2006)
Laporte, G., Gendreau, M., Potvin, J., Semet, F.: Classical and modern heuristics for the vehicle routing problem. International Transactions in Operational Research 7, 285–300 (2000)
Leung, Y., Gao, Y., Xu, Z.: Degree of population diversity–a perspective on premature convergence in genetic algorithms and its Markov chain analysis. IEEE Transactions on Neural Networks 8(5), 1165–1176 (1997)
Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245–2269 (1965)
Lobo, F.G., Goldberg, D.E.: The parameterless genetic algorithm in practice. Information Sciences–Informatics and Computer Science 167(1-4), 217–232 (2004)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1994)
Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41, 421–451 (1993)
Parunak, H.V.D.: Agents in overalls: Experiences and issues in the development and deployment of industrial agent-based systems. International Journal of Cooperative Information Systems 9(3), 209–228 (2000)
Piszcz, A., Soule, T.: Genetic programming: Optimal population sizes for varying complexity problems. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 953–954 (2006)
Puchinger, J., Raidl, G.R.: Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 41–53. Springer, Heidelberg (2005)
Resende, M.G.C., Ribeiro, C.C., Glover, F., Marti, R.: Scatter Search and Path-Relinking: Fundamentals, Advances, and Applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146, pp. 87–107. Springer (2010)
Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Univ. of Illinois Press (1949)
Talbi, E.G.: Metaheuristics: From Design to Implementation. John Wiley and Sons, Inc. (2009)
Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Barbucha, D. (2013). Experimental Study of the Population Parameters Settings in Cooperative Multi-agent System Solving Instances of the VRP. In: Nguyen, N.T. (eds) Transactions on Computational Collective Intelligence IX. Lecture Notes in Computer Science, vol 7770. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36815-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-36815-8_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36814-1
Online ISBN: 978-3-642-36815-8
eBook Packages: Computer ScienceComputer Science (R0)