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Abstract. The smallest positive eigenvalue of the Laplacian of a net-
work is called the spectral gap and characterizes various dynamics on
networks. We propose mathematical programming methods to maximize
the spectral gap of a given network by removing a fixed number of nodes.
We formulate relaxed versions of the original problem using semidefinite
programming and apply them to example networks.
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1 Introduction

An undirected and unweighted network (i.e., graph) on N nodes is equivalent
to an N × N symmetric adjacency matrix A = (Aij), where Aij = 1 when
nodes (also called vertices) i and j form a link (also called edge), and Aij = 0
otherwise. We define the Laplacian matrix of the network by

L ≡ D −A, (1)

where D is the N×N diagonal matrix in which the ith diagonal element is equal
to

∑N

j=1 Aij , i.e., the degree of node i.
When the network is connected, the eigenvalues of L satisfy

λ1 = 0 < λ2 ≤ · · · ≤ λN . (2)

The eigenvalue λ2 is called spectral gap or algebraic connectivity and charac-
terizes various dynamics on networks including synchronizability [3,4,10], speed
of synchronization [3], consensus dynamics [17], the speed of convergence of the
Markov chain to the stationary density [8, 10], and the first-passage time of the
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random walk [10]. Because a large λ2 is often considered to be desirable, e.g., for
strong synchrony and high speed of convergence, maximization of λ2 by changing
networks under certain constraints is important in applications.

In the present work, we consider the problem of maximizing the spectral gap
by removing a specified number, Ndel, of nodes from a given network. We assume
that an appropriate choice of Ndel nodes keeps the network connected. A heuris-
tic algorithm for this task in which nodes are sequentially removed is proposed
in [20]. In this study, we explore a mathematical programming approach. We pro-
pose two algorithms using semidefinite programming and numerically compare
their performance with that of the sequential algorithm proposed in [20].

2 Methods

We start by introducing notations. First, the binary variable xi (1 ≤ i ≤ N)
takes a value of 0 if node i is one of the Ndel removed nodes and 1 if node i
survives the removal. Our goal is to determine xi (1 ≤ i ≤ N) that maximizes
λ2 under the constraint

N
∑

i=1

xi = N −Ndel. (3)

Second, we define L̃ij as the N ×N Laplacian matrix generated by a single link
(i, j) ∈ E, where E is the set of links. In other words, the (i,i) and (j,j) elements
of L̃ij are equal to 1, the (i,j) and (j,i) elements of L̃ij are equal to −1, and all

the other elements of L̃ij are equal to 0. It should be noted that

L =
∑

1≤i<j≤N ;(i,j)∈E

L̃ij . (4)

Third, J denotes the N × N matrix in which all the N2 elements are equal to
unity. Fourth, Ei denotes the N ×N diagonal matrix in which the (i, i) element
is equal to unity and all the other N2 − 1 elements are equal to 0.

After the removal of Ndel nodes, we do not decrease the size of the Laplacian.
Instead, we remove L̃ij from the summation on the RHS of Eq. (4) if node i or
j has been removed from the network. The Laplacian of the remaining network,
if connected, has Ndel +1 zero eigenvalues. The corresponding zero eigenvectors
are given by u

(0) ≡ (1 · · · 1)⊤ and ei, where ⊤ denotes the transposition, ei is
the unit column vector in which the ith element is equal to 1 and the other N−1
elements are equal to 0, and i is the index of one of the Ndel removed nodes.

We formulate a nonlinear eigenvalue optimization problem, which we call
EIGEN, as follows:

maximize t subject to Eq. (3) and

− tI +
∑

i<j;(i,j)∈E

xixj L̃ij + αJ + β

N
∑

i=1

(1− xi)Ei � 0, (5)
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and xi ∈ {0, 1} (1 ≤ i ≤ N), where � 0 indicates that the LHS is a posi-
tive semidefinite matrix. The positive semidefinite constraint Eq. (5) is derived
from a standard prescription in semidefinite programming for optimization of
an extreme eigenvalue of a matrix. Maximizing t is equivalent to maximizing
the smallest eigenvalue of the matrix given by the sum of the second, third, and
fourth terms on the LHS of Eq. (5).

Without the third and fourth terms on the LHS of Eq. (5), the optimal solu-
tion would be trivially equal to t = 0 because the Laplacian of any network has
0 as the smallest eigenvalue. Because J = u

(0)
u
(0)⊤, the third term transports

a zero eigenvalue to ≈ α. We should take a sufficiently large α > 0 such that the
zero eigenvalue is shifted to a value larger than the spectral gap of the remain-
ing network, denoted by λ̃2. This technique was introduced in [9] for solving the
traveling salesman problem.

For each removed node i (i.e., xi = 0), the matrix represented by the second
term on the LHS of Eq. (5) has a zero eigenvalue associated with eigenvector ei.
The fourth term shifts this zero eigenvalue to ≈ β. Note that the fourth term
disappears for the remaining N − Ndel nodes because xi = 1 for the remaining
nodes. If the shifted eigenvalues are larger than λ̃2, the solution to the problem
stated above returns the Ndel nodes whose removal maximizes λ̃2.

The second term on the LHS of Eq. (5) represents a nonlinear constraint.
To linearize the problem in terms of the variables, we follow a conventional
prescription to introduce auxiliary variables

Xij ≡ xixj , (6)

where 1 ≤ i ≤ j ≤ N [13–15] (also reviewed in [12]). If xi is discrete, xi(1−xi) =
0 holds true. Therefore, we require Xii = x2

i = xi. In the following discussion,
we use xi in place of Xii.

We define the (N + 1)× (N + 1) matrix

Y ≡

[

1 x
⊤

x X

]

, (7)

where x ≡ (x1 . . . xN )⊤, the (i, i) element of the N ×N matrix X is equal to
xi, and the (i, j) element (i 6= j) of X is equal to Xij . By allowing xi and Xij

(1 ≤ i < j ≤ N) to take any continuous value between 0 and 1, we define the
relaxed problem named SDP1 as follows:

maximize t subject to Eq. (3) and

−tI +
∑

i<j;(i,j)∈E

Xij L̃ij+αJ + β

N
∑

i=1

(1− xi)Ei � 0, (8)

Y �0. (9)

Note that Eq. (9) implies 0 ≤ xi ≤ 1 (1 ≤ i ≤ N) and that SDP1 relaxes
the original problem in that xi and Xij are allowed to take continuous values
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while Eq. (9) is imposed. The method that we propose here for approximately
maximizing the spectral gap is to remove the Ndel nodes corresponding to the
Ndel smallest values among x1, . . ., xN in the optimal solution of SDP1.

SDP1 involves N(N + 1)/2 + 1 variables (i.e., t, xi, and Xij with i < j).
In fact, Xij for (i, j) /∈ E is free unless Eq. (9) is violated; it does not appear
in the main positive semidefinite constraint represented by Eq. (8). Because a
given network is typically sparse, this implies that there are many redundant
variables in SDP1. To exploit the sparsity and thus to save time and memory
space, a technique based on matrix completion might be useful [11, 16]. In this
paper, however, we propose another relaxation SDP2 for this purpose.

To linearize the second term on the LHS of Eq. (5), we take advantage of
four inequalities xixj ≥ 0, xi(1−xj) ≥ 0, (1−xi)xj ≥ 0, and (1−xi)(1−xj) ≥ 0
that must be satisfied for any link (i, j) ∈ E. By defining Xij ≡ xixj , as in the
case of SDP1, we obtain the following four linear constraints [18]:

Xij ≥0, (10)

xi −Xij ≥0, (11)

xj −Xij ≥0, (12)

1− xi − xj +Xij ≥0. (13)

SDP2 is defined by replacing Eq. (9) by Eqs. (10)–(13), where only the pairs
(i, j) ∈ E are considered. Note that Eqs. (10)–(13) guarantee 0 ≤ xi ≤ 1 (1 ≤
i ≤ N). We remove the Ndel nodes corresponding to the Ndel smallest values
among x1, . . ., xN in the optimal solution of SDP2.

Numerically, SDP2 is much easier to solve than SDP1 for two reasons. First,
the number of variables is smaller in SDP2 than in SDP1. In SDP2, Xij is
defined only on the links, whereas in SDP1 it is defined for all the pairs 1 ≤
i < j ≤ N . In sparse networks, the number of variables is O(N2) for SDP1
and O(N) for SDP2. Second, the positive semidefinite constraint, which is much
more time consuming to solve than a linear constraint of a comparable size, is
smaller in SDP2 than in SDP1. While SDP1 and SDP2 share the N×N positive
semidefinite constraint (8), SDP1 involves an additional positive semidefinite
constraint (9) of size (N + 1)× (N + 1).

To determine the values of α and β, we consider the matrix represented
by the sum of the second, third, and fourth terms on the LHS of Eq. (5). A
straightforward calculation shows that the eigenvalues of this matrix are given
by theN−Ndel−1 positive eigenvalues of the Laplacian of the remaining network,

(Ndel − 1)-fold β, and β +
[

αN − β ±
√

(αN − β)2 + 4Ndelαβ
]

/2. For a fixed

β, we should select α to maximize β +
[

αN − β −
√

(αN − β)2 + 4Ndelαβ
]

/2,

which is always smaller than eigenvalue β. We set

α =
β

N
(14)

to simplify the expression of this eigenvalue to β(1 −
√

Ndel/N) while approxi-
mately maximizing this eigenvalue.



Semidefinite Programming for Maximizing the Spectral Gap 5

We have the following bounds for the optimal solution to the original prob-
lem. We denote by λ̃opt

2 the optimal solution, i.e., the maximum spectral gap
with Ndel nodes removed. We denote by λ̃SDP

2 the smallest positive eigenvalue
of the network obtained by the proposed method; the proposed method removes
the Ndel nodes corresponding to the Ndel smallest values of x1, . . ., xN in the
optimal solution of SDP1 or SDP2. Obviously, λ̃SDP

2 is a lower bound for λ̃opt
2 .

On the other hand, the optimal value, max t, of SDP1 or SDP2 serves as an
upper bound for λ̃opt

2 , as long as the β satisfies λ̃opt
2 ≤ β(1 −

√

Ndel/N). This
follows from the facts that the optimal value of EIGEN with such a β value
coincides with λ̃opt

2 and both SDP1 and SDP2 are a relaxation of EIGEN. We
can summarize our observation as follows: λ̃SDP

2 ≤ λ̃opt
2 ≤ max t.

3 Numerical results

In this section, we apply SDP1 and SDP2 to some synthetic and real networks.
We implement SDP1 and SDP2 using the free software package SeDuMi 1.3 that
runs on MATLAB 7.7.0.471 (R2008b) [1].

We compare the performance of SDP1 and SDP2 with that of the optimal
sequential method, which is a heuristic method proposed in [20]. In the optimal
sequential method, we numerically calculate the spectral gap for the network
obtained by the removal of one node; we do this for all possible choices of a
node to be removed. Subsequently, we remove the node whose removal yields
the largest spectral gap. Then, for the remaining network composed of N − 1
nodes, we determine the second node to be removed in the same way. We repeat
this procedure until Ndel nodes have been removed.

The first example network is the well-known karate club social network, in
which a node represents a member of the club and a link represents casual
interaction between two members [21]. The network has N = 34 nodes and 78
links. We set β = 2. The spectral gaps obtained by the different node removal
methods are shown in Fig. 1(a) as a function of Ndel. Up to Ndel = 5, the
optimal sequential method yields the exact solution, as do SDP1 and SDP2.
For Ndel ≥ 6, we could not obtain the exact solution by the exhaustive search
because of the combinatorial explosion. For 7 ≤ Ndel ≤ 16, SDP1 and SDP2
perform worse than the optimal sequential method. However, for Ndel ≥ 17,
both SDP1 and SDP2 outperform the optimal sequential method. SDP1 and
SDP2 found efficient combinations of removed nodes that the optimal sequential
method could not find.

Second, we test the three methods against the largest connected component
of the undirected and unweighted version of a macaque cortical network [19].
The network has N = 71 nodes and 438 links. We set β = 2. The spectral
gaps obtained by the different methods are shown in Fig. 1(b). Up to Ndel =
4, the optimal sequential method yields the exact solution, as do SDP1 and
SDP2. For Ndel ≥ 5, we could not obtain the exact solution because of the
combinatorial explosion. For Ndel ≥ 5, SDP1 and SDP2 perform worse than
the optimal sequential method. Consistent with the poor performance of SDP1
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and SDP2, the final values of xi (1 ≤ i ≤ N) are not bimodally distributed
around 0 and 1 as SDP1 and SDP2 implicitly suppose. The distribution is rather
unimodal except for the first three values of xi that are close to 0. The ten
values of xi when Ndel = 5, in ascending order, are as follows: x33 = 0.1086,
x62 = 0.1531, x53 = 0.1589, x1 = 0.4813, x2 = 0.5246, x8 = 0.5591, x7 = 0.6449,
x24 = 0.7866, x51 = 0.8749, and x63 = 0.8931 in SDP1, and x53 = 0.000,
x33 = 0.145, x62 = 0.177, x2 = 0.585, x1 = 0.588, x8 = 0.610, x7 = 0.668,
x24 = 0.708, x5 = 0.738, and x4 = 0.937 in SDP2.
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Fig. 1. Spectral gap as a function of the number of removed nodes for four networks.
(a) Karate club social network with N = 34 nodes. (b) Macaque cortical network
with N = 71 nodes. (c) Barabási–Albert scale-free network with N = 150 nodes. (d)
C. elegans neural network with N = 279 nodes.

The third network is a network with N = 150 nodes generated by the
Barabási–Albert scale-free network model [5]. The growth of the network starts
with a connected pair of nodes, and each incoming node is assumed to have two
links. The generated network has 297 links. We set β = 2. For this and the next
networks, SDP1 cannot be applied because N is too large. Therefore, we only
compare the performance of SDP2 against the optimal sequential method. The
results shown in Fig. 1(c) indicate that SDP2 outperforms the optimal sequential
method when Ndel ≥ 7.
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The fourth network is the largest connected component of the C. elegans

neural network [2, 7]. Two nodes are regarded as being connected when they
are connected by a chemical synapse or gap junction. We ignore the direction
and weight of links. The network has N = 279 nodes and 2287 links. We set
β = 2.5. The results for SDP2 and the optimal sequential method are shown
in Fig. 1(d). Although the spectral gap gradually increases with Ndel for SDP2,
SDP2 performs poorly as compared to the optimal sequential method for this
example.

4 Discussion

We proposed a method to maximize the spectral gap using semidefinite program-
ming. The two proposed algorithms have a firmer mathematical foundation as
compared to the heuristic numerical method (i.e., optimal sequential method).
The proposed algorithms performed better than the heuristic method for two
networks especially for large Ndel and worse for the other two networks. For the
former two networks, we could find the solutions in the situations in which the
exhasutive search is computationally formidable. Up to our numerical efforts,
our algorithms seem to be efficient for sparse networks.

We should be careful about the choice of β. If β is too large, SDP1 and SDP2
would result in xi ≈ Ndel/N (1 ≤ i ≤ N). This is because setting xi = Ndel/N
(1 ≤ i ≤ N) makes the fourth term on the LHS of Eq. (5) equal to βN−Ndel

N
I,

which increases all the eigenvalues, including the spectral gap of the remaining
network, by βN−Ndel

N
. In contrast, if β is smaller than λ̃2, SDP1 and SDP2

would maximize a false eigenvalue originating from the fourth term on the LHS
of Eq. (5).

To enhance the performance of SDP1 and SDP2, it may be useful to abandon
the convexity of the problem. For example, we could try replacing (1−xi) in the
fourth term by (1 − xi)

p and gradually increase p from unity. When p > 1, the
problem is no longer convex. Accordingly, the existence of the unique solution
and the convergence of a proposed algorithm are not guaranteed. Nevertheless,
we may be able to track the optimal solution x by the Newton method while
we gradually increase p (see p.5 and p.63 in [6]). An alternative extension is to

add −p
∑N

i=1 xi(1−xi) to the objective function to be maximized (i.e., t). When
p > 0, the convexity is violated. However, we may be able to adopt a procedure
similar to the method explained above, i.e., start with p = 0 and gradually
increase p to track the solution by the Newton method.
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