Abstract
The smallest positive eigenvalue of the Laplacian of a network is called the spectral gap and characterizes various dynamics on networks. We propose mathematical programming methods to maximize the spectral gap of a given network by removing a fixed number of nodes. We formulate relaxed versions of the original problem using semidefinite programming and apply them to example networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almendral, J.A., DÃaz-Guilera, A.: Dynamical and spectral properties of complex networks. New J. Phys. 9, 187 (2007)
Arenas, A., DÃaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Bendsøe, M.P., Sigmund, O.: Topology Optimization. Springer (2003)
Chen, B.L., Hall, D.H., Chklovskii, D.B.: Wiring optimization can relate neuronal structure and function. Proc. Natl. Acad. Sci. USA 103, 4723–4728 (2006)
Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. CMU (2010)
Cvetkovic, D., Cangalovic, M., Kovacevic-Vujcic, V.: Semidefinite Programming Methods for the Symmetric Traveling Salesman Problem. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 126–136. Springer, Heidelberg (1999)
Donetti, L., Neri, F., Munoz, M.A.: Optimal network topologies: expanders, cages, Ramanujan graphs, entangled networks and all that. J. Stat. Mech., P08007 (2006)
Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via matrix completion I: general framework. SIAM J. Optim. 11, 647–674 (2000)
Goemans, M.X.: Semidefinite programming in combinatorial optimization. Math. Programming 79, 143–161 (1997)
Grötschel, M., Lovász, L., Schrijver, A.: Relaxations of vertex packing. J. Comb. Theory B 40, 330–343 (1986)
Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. on Info. Th. 25, 1–7 (1979)
Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. Siam J. Optimiz. 1, 166–190 (1991)
Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M., Murota, K.: Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results. Math. Program. Ser. B 95, 305–327 (2003)
Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95, 215–233 (2007)
Padberg, M.: The Boolean quadric polytope—some characteristics, facets and relatives. Math. Programming 45(1), 139–172 (1989)
Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 4, 145–162 (2004)
Watanabe, T., Masuda, N.: Enhancing the spectral gap of networks by node removal. Phys. Rev. E 82, 46102 (2010)
Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropological Res. 33, 452–473 (1977)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Masuda, N., Fujie, T., Murota, K. (2013). Application of Semidefinite Programming to Maximize the Spectral Gap Produced by Node Removal. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds) Complex Networks IV. Studies in Computational Intelligence, vol 476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36844-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-36844-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36843-1
Online ISBN: 978-3-642-36844-8
eBook Packages: EngineeringEngineering (R0)