Skip to main content

Towards a Framework for Evaluating the Security of Physical-Layer Identification Systems

  • Conference paper
  • 1237 Accesses

Summary

In recent years researchers have shown that the analogue signalling behaviour of digital devices can be used for identification and monitoring purposes. The basic postulate of these so-called physical-layer identification (PLI) approaches is that devices are sufficiently variable in their behaviour to be distinguishable and that an attacker would be unable to adequately emulate this behaviour. Recent work, however, has shown that at least some PLI implementations can be defeated using electronic equipment capable of generating arbitrarily shaped signals known as arbitrary waveform generators (AWGs).

In this work we first present a framework to determine whether an AWG, specified in terms of resolution, sampling rate, distortion, and noise parameters, could be used to defeat a given PLI system. We then utilise this framework in the formulation of a cost-minimisation problem to find the most cost-effective values of these parameters; i.e. we characterise the least expensive, and hence lowest performing, AWG an attacker would require to defeat a PLI system. The use of the framework is illustrated by applying it to a previously proposed PLI approach. Results indicate that the PLI system could be defeated using an AWG with a substantially lower sampling rate and resolution than the PLI system sampler.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerdes, R.M., Daniels, T.E., Mina, M., Russell, S.F.: Device identification via analog signal fingerprinting: A matched filter approach. In: Proceedings of the 2006 Network and Distributed System Security Symposium (NDSS 2006). The Internet Society (2006)

    Google Scholar 

  2. Hall, J., Barbeau, M., Kranakis, E.: Detection of transient in radio frequency fingerprinting using signal phase. In: Proceedings of the 3rd IASTED International Conference on Wireless and Optical Communications (WOC 2003), pp. 13–18. ACTA Press (2003)

    Google Scholar 

  3. Hall, J., Barbeau, M., Kranakis, E.: Enhancing intrusion detection in wireless networks using radio frequency fingerprinting. In: Proceedings of Communications, Internet and Information Technology (CIIT 2004). ACTA Press (2004)

    Google Scholar 

  4. Ureten, O., Serinken, N.: Wireless security through rf fingerprinting. Canadian Journal of Electrical and Computer Engineering 32, 27–33 (2007)

    Article  Google Scholar 

  5. Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with radiometric signatures. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking (MobiCom 2008), pp. 116–127. ACM (2008)

    Google Scholar 

  6. Shi, Y., Jensen, M.: Improved radiometric identification of wireless devices using mimo transmission. IEEE Transactions on Information Forensics and Security 6(4), 1346–1354 (2011)

    Article  Google Scholar 

  7. Rasmussen, K.B., Capkun, S.: Implications of radio fingerprinting on the security of sensor networks. In: Proceedings of the Third International Conference on Security and Privacy in Communications Networks and the Workshops (SecureComm 2007), pp. 331–340. IEEE Computer Society (2007)

    Google Scholar 

  8. Danev, B., Capkun, S.: Transient-based identification of wireless sensor nodes. In: Proceedings of the 2009 International Conference on Information Processing in Sensor Networks (IPSN 2009), pp. 25–36. IEEE Computer Society (2009)

    Google Scholar 

  9. Saparkhojayev, N., Thompson, D.R.: Matching electronic fingerprints of rfid tags using the hotelling’s algorithm. In: Proceedings of the IEEE Sensors Applications Symposium (SAS), pp. 19–24. IEEE Computer Society (2009)

    Google Scholar 

  10. Danev, B., Heydt-Benjamin, T.S., Capkun, S.: Physical-layer identification of rfid devices. In: Proceedings of the USENIX Security Symposium (USENIX-SS 2009), pp. 199–214. USENIX Association (2009)

    Google Scholar 

  11. Zanetti, D., Danev, B., Capkun, S.: Physical-layer identification of uhf rfid tags. In: Proceedings of the 16th ACM Annual International Conference on Mobile Computing and Networking (MOBICOM 2010), pp. 353–364. ACM (2010)

    Google Scholar 

  12. Gerdes, R.M.: Physical layer identification: methodology, security, and origin of variation. PhD thesis, Iowa State University, Ames, IA (2011)

    Google Scholar 

  13. Danev, B.: Physical-layer Identification of Wireless Devices. PhD thesis, ETH Zurich, Zurich, Switzerland (2011)

    Google Scholar 

  14. Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: Guide to Biometrics. Springer (2004)

    Google Scholar 

  15. Danev, B., Luecken, H., Capkun, S., Defrawy, K.E.: Attacks on physical-layer identification. In: Proceedings of the Third ACM Conference on Wireless Network Security (WiSec 2010), pp. 89–98. ACM, New York (2010)

    Chapter  Google Scholar 

  16. Edman, M., Yener, B.: Active attacks against modulation-based radiometric identification. Technical report, Rensselaer Polytechnic Institute, Department of Computer Science (2009)

    Google Scholar 

  17. IEEE: IEEE 802.3-2008 ieee standard for information technology-specific requirements–part 3: Carrier sense multiple access with collision detection (cmsa/cd) access method and physical layer specifications. Technical report, IEEE, IEEE Std 802.3–2008 (2008)

    Google Scholar 

  18. Burns, M., Roberts, G.W.: An introduction to mixed-signal IC test and measurement. Oxford University Press (2001)

    Google Scholar 

  19. Kester, W.: Evaluating high speed dac performance. Technical report, Analog Devices, MT-013 Tutorial (2008)

    Google Scholar 

  20. Balestrieri, E., Moisa, S., Rapuano, S.: Dac static parameter specifications some critical notes. In: Proceedings of the 10th IMEKO TC-4 Workshop on ADC Modelling and Testing, vol. 1, pp. 81–86 (2005)

    Google Scholar 

  21. Hendriks, P.: Specifying communications dacs. IEEE Spectrum 34, 58–69 (1997)

    Article  Google Scholar 

  22. Tektronix USA: AWG7000B Series AWG Data Sheet

    Google Scholar 

  23. Oppenheim, A.V., Schafer, R.W. (eds.): Discrete-Time Signal Processing. Prentice Hall (1989)

    Google Scholar 

  24. Analog Devices USA: (AD9734/AD9735/AD9736 Series DAC Data Sheet)

    Google Scholar 

  25. Wambacq, P., Sansen, W.M. (eds.): Distortion Analysis of Analog Integrated Circuits. Springer (1998)

    Google Scholar 

  26. Andersson, K.O.: Studies on Performance Limitations in CMOS DACs. PhD thesis, Linkopings universitet, Linkoping, Sweden (2002)

    Google Scholar 

  27. Wikner, J.J.: Studies on CMOS Digital-to-Analog Converters. PhD thesis, Linkopings universitet, Linkoping, Sweden (2001)

    Google Scholar 

  28. Chan, K.L., Zhu, J., Galton, I.: Dynamic element matching to prevent nonlinear distortion from pulse-shape mismatches in high-resolution dacs. IEEE Journal of Solid-State Circuits 43(9), 2067–2078 (2008)

    Article  Google Scholar 

  29. Naoues, M., Morche, D., Dehos, C., Barrak, R., Ghazes, A.: Novel behavioral dac modeling technique for wirelesshd system specification. In: Proceedings of the IEEE Electronics, Circuits and Systems (ICECS 2009), pp. 543–546 (2009)

    Google Scholar 

  30. Wit, P.D., Gielen, G.: Efficient simulation model for dac dynamic properties. In: Proceedings of the IEEE Circuits and Systems (ISCAS 2010), pp. 2896–2899 (2010)

    Google Scholar 

  31. Andersson, N.U., Andersson, K.O., Vesterbacka, M., Wikner, J.J.: Models and implementation of a dynamic element matching dac. Analog Integrated Circuits and Signal Processing 34, 7–16 (2003)

    Article  Google Scholar 

  32. Vandenbussche, J., der Plas, G.V., Gielen, G., Sansen, W.: Behavioral model of reusable d/a converters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 46, 1323–1326 (1999)

    Article  Google Scholar 

  33. Riley, K., Hummels, D., Irons, F., Rundell, A.: Dynamic compensation of digital to analog converters. In: Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IMTC 1999), vol. 2, pp. 1310–1315 (1999)

    Google Scholar 

  34. Gerdes, R.M., Mina, M., Daniels, T.E.: Awg characterisation definitions. Technical report (2012), http://www.eng.usu.edu/ece/faculty/rgerdes/papers/tech/awgCharDef.pdf

  35. Analog Devices USA: AD9763/AD9765/AD9767 Series DACData Sheet

    Google Scholar 

  36. Maloberti, F., Estrada, P., Valero, A., Malcovati, P.: Behavioral modeling and simulation of data converters. In: Proceedings of IMEKO 2000, vol. 10, pp. 229–236 (2000)

    Google Scholar 

  37. Liu, E.W.Y.: Analog Behavioral Simulation and Modeling. PhD thesis, University of California, Berkeley, CA (1993)

    Google Scholar 

  38. Analog Devices USA: AD9777 Series Data DAC Sheet

    Google Scholar 

  39. Analog Devices: Design Tools ADIsimDAC (2011), http://designtools.analog.com/dtSimDACWeb/dtSimDACMain.aspx

  40. Aksin, D.Y., Maloberti, F.: Non-linear behavioral model of a bipolar track and hold amplifier for high-speed and high-resolution adcs. In: Proceedings of the IEEE Electronics, Circuits and Systems (ICECS 2005), pp. 1–4 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Gerdes, R.M., Mina, M., Daniels, T.E. (2013). Towards a Framework for Evaluating the Security of Physical-Layer Identification Systems. In: Keromytis, A.D., Di Pietro, R. (eds) Security and Privacy in Communication Networks. SecureComm 2012. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36883-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36883-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36882-0

  • Online ISBN: 978-3-642-36883-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics