Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7746))

Abstract

Myocardial viability assessment is an important task in the diagnosis of coronary heart disease. The measurement of the delayed enhancement effect, the accumulation of contrast agent in defective tissue, has become the gold standard for detecting necrotic tissue with MRI. The purpose of the presented work was to provide a segmentation and quantification method for delayed enhancement MRI. To this end, a suitable mixture model for the myocardial intensity distribution is determined based on expectation maximization and the comparison of the fit accuracy. The subsequent watershed-based segmentation uses the intensity threshold information derived from this model. Preliminary results are derived from an analysis of datasets provided by the STACOM challenge organizers. The segmentation provided reasonable results in all datasets, but the method strongly depends on the underlying myocardium segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gerber, B.L., Rousseau, M.F., Ahn, S.A., le Polain de Waroux, J.B., Pouleur, A.C., Phlips, T., Vancraeynest, D., Pasquet, A., Vanoverschelde, J.L.J.: Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J. Am. Coll. Cardiol. 59(9), 825–835 (2012)

    Article  Google Scholar 

  2. Kim, R., Fieno, D., Parrish, T., Harris, K., Chen, E., Simonetti, O., Bundy, J., Finn, J., Klocke, F., Judd, R.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19), 1992–2002 (1999)

    Article  Google Scholar 

  3. Kolipaka, A., Chatzimavroudis, G., White, R., O’Donnell, T., Setser, R.: Segmentation of non-viable myocardium in delayed enhancement magnetic resonance images. Int. J. Cardiovasc. Imaging 21(2-3), 303–311 (2005)

    Article  Google Scholar 

  4. Positano, V., Pingitore, A., Giorgetti, A., Favilli, B., Santarelli, M., Landini, L., Marzullo, P., Lombardi, M.: A Fast and Effective Method to Assess Myocardial Necrosis by Means of Contrast Magnetic Resonance Imaging. Journal of Cardiovascular Magnetic Resonance 7(2), 487–494 (2005)

    Article  Google Scholar 

  5. O’Donnell, T., Xu, N., Setser, R., White, R.: Semi-automatic segmentation of nonviable cardiac tissue using cine and delayed enhancement magnetic resonance images. In: Proceedings of SPIE, vol. 5031, p. 242 (2003)

    Google Scholar 

  6. Hsu, L., Natanzon, A., Kellman, P., Hirsch, G., Aletras, A., Arai, A.: Quantitative myocardial infarction on delayed enhancement MRI, part I: animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J. Magn. Reson. Imaging 23, 298–308 (2006)

    Article  Google Scholar 

  7. Choi, K., Kim, R., Gubernikoff, G., Vargas, J., Parker, M., Judd, R.: Transmural Extent of Acute Myocardial Infarction Predicts Long-Term Improvement in Contractile Function. Circulation 104(10), 1101–1107 (2001)

    Article  Google Scholar 

  8. Tao, Q., Milles, J., Zeppenfeld, K., Lamb, H., Bax, J., Reiber, J., van der Geest, R.: Automated segmentation of myocardial scar in late enhancement MRI using combined intensity and spatial information. Magn. Reson. Med. 64(2), 586–594 (2010)

    Google Scholar 

  9. Elagouni, K., Ciofolo-Veit, C., Mory, B.: Automatic segmentation of pathological tissue in cardiac MRI. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, pp. 472–475 (2010)

    Google Scholar 

  10. Saering, D., Ehrhardt, J., Stork, A., Bansmann, P., Lund, G., Handels, H.: Analysis of the Left Ventricle after Myocardial Infarction combining 4D Cine-MR and 3D DE-MR Image Sequences. In: Bildverarbeitung fuer die Medizin, pp. 56–60 (2006)

    Google Scholar 

  11. Dietrich, O., Raya, J., Reeder, S., Ingrisch, M., Reiser, M., Schoenberg, S.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn. Reson. Imaging 26(6), 754–762 (2008)

    Article  Google Scholar 

  12. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications (1965)

    Google Scholar 

  13. Hennemuth, A., Seeger, A., Friman, O., Miller, S., Klumpp, B., Oeltze, S., Peitgen, H.O.: A comprehensive approach to the analysis of contrast enhanced cardiac MR images. IEEE Trans. Med. Imaging 27(11), 1592–1610 (2008)

    Article  Google Scholar 

  14. Friman, O., Hennemuth, A., Peitgen, H.O.: A Rician-Gaussian Mixture Model for Segmenting Delayed Enhancement MRI Images. In: ISMRM 2008, p. 1040 (2008)

    Google Scholar 

  15. Hennemuth, A., Friman, O., Huellebrand, M., Peitgen, H., Mahnken, A.: Semi-Automatic Quantification of Late Enhancement in CT and MRI Images. In: ISMRM 2012, p. 1251 (2012)

    Google Scholar 

  16. Hunold, P., Schlosser, T., Barkhausen, J.: Magnetic resonance cardiac perfusion imaging-a clinical perspective. Eur. Radiol. 16(8), 1779–1788 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hennemuth, A., Friman, O., Huellebrand, M., Peitgen, HO. (2013). Mixture-Model-Based Segmentation of Myocardial Delayed Enhancement MRI. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36961-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36960-5

  • Online ISBN: 978-3-642-36961-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics