Abstract
X-ray fluoroscopic images are widely used for image guidance in cardiac electrophysiology (EP) procedures to diagnose or treat cardiac arrhythmias based on catheter ablation. However, the main disadvantage of fluoroscopic imaging is the lack of soft tissue information and harmful radiation. In contrast, ultrasound (US) has the advantages of low-cost, non-radiation, and high contrast in soft tissue. In this paper we propose a framework to extract the catheter from both X-ray and US images in real time for cardiac interventions. The catheter extraction from X-ray images is based on SURF features, local patch analysis and Kalman filtering to acquire a set of sorted key points representing the catheter. At the same time, the transformation between the X-ray and US images can be obtained via 2D/3D rigid registration between a 3D model of the US probe and its projection on X-ray images. By backprojecting the information about the catheter location in the X-ray images to the US images the search space can be drastically reduced. The extraction of the catheter from US is based on 3D SURF feature clusters, graph model building, A* algorithm and B-spline smoothing. Experiments show the overall process can be achieved in 2.72 seconds for one frame and the reprojected error is 1.99 mm on average.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brost, A., Liao, R., Hornegger, J., Strobel, N.: 3-D Respiratory Motion Compensation during EP Procedures by Image-Based 3-D Lasso Catheter Model Generation and Tracking. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 394–401. Springer, Heidelberg (2009)
Ma, Y., King, A.P., Gogin, N., Rinaldi, C.A., Gill, J., Razavi, R., Rhode, K.S.: Real-Time Respiratory Motion Correction for Cardiac Electrophysiology Procedures Using Image-Based Coronary Sinus Catheter Tracking. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 391–399. Springer, Heidelberg (2010)
Brost, A., Wimmer, A., Liao, R., Hornegger, J., Strobel, N.: Catheter Tracking: Filter-Based vs. Learning-Based. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 293–302. Springer, Heidelberg (2010)
Wu, W., Chen, T., Barbu, A., et al.: Learning-Based Hypothesis Fusion for Robust Catheter Tracking in 2D X-Ray Fluoroscopy. In: CVPR, pp. 1097–1104 (2011)
Nichols, K., Wright, L.B., Spencer, T., Culp, W.C.: Changes in Ultrasonographic Echogenicity and Visibility of Needles with Changes in Angles of Insonation. J. Vasc. Interv. Radiol. 14(12), 1553–1557 (2003)
Cheung, S., Rohling, R.: Enhancement of Needle Visibility in Ultrasound-Guided Percutaneous Procedures. Ultr. Med. Biol. 30(5), 617–624 (2004)
Mung, J., Vignon, F., Jain, A.: A Non-disruptive Technology for Robust 3D Tool Tracking for Ultrasound-Guided Interventions. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 153–160. Springer, Heidelberg (2011)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transaction of the ASME—Journal of Basic Engineering, 35–45 (1960)
Gao, G., Penney, G., Gogin, N., Cathier, P., Arujuna, A., Wright, M., Caulfield, D., Rinaldi, A., Razavi, R., Rhode, K.: Rapid Image Registration of Three-Dimensional Transesophageal Echocardiography and X-ray Fluoroscopy for the Guidance of Cardiac Interventions. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 124–134. Springer, Heidelberg (2010)
Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 24, 381–395 (1981)
Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, X., Housden, J., Ma, Y., Rueckert, D., Rhode, K.S. (2013). Real-Time Catheter Extraction from 2D X-Ray Fluoroscopic and 3D Echocardiographic Images for Cardiac Interventions. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-36961-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36960-5
Online ISBN: 978-3-642-36961-2
eBook Packages: Computer ScienceComputer Science (R0)