Abstract
Sudden cardiac death is a major cause of death in industrialized world; in particular, patients with prior infarction can develop lethal arrhythmia. Our aim is to understand the transmural propagation of electrical wave and to accurately predict activation times under different stimulation conditions (sinus rhythm and paced) using MRI-based computer models of normal or structurally diseased hearts. Parameterization of such models is a prerequisite step prior integration into clinical platforms. In this work, we first evaluated the errors associated with the registration process between contact EP data and MRI-based models, using in vivo CARTO maps recorded in three swine hearts (two healthy and one infarcted) and the corresponding heart meshes obtained from high-resolution ex vivo diffusion weighted DW-MRI (voxel size < 1mm3). We used the open-source software Vurtigo to align, register and project the CARTO depolarization maps (from LV-endocardium and epicardium) onto the MR-derived meshes, with an acceptable registration error of < 5mm in all maps. We then compared simulation results obtained with the macroscopic monodomain formalism (i.e., the two-variable Aliev-Panfilov model), the simple Eikonal model, and the complex bidomain model (TNNP model) under different stimulation conditions. We found small errors between the measured and the predicted activation times, as well as between the depolarization times using these three models (e.g., with a mean error of 3.4 ms between the A-P and TNNP model), suggesting that simple mathematical formalisms might be a good choice for integration of fast, predictive models into clinical platforms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clayton, R.H., Panfilov, A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progress in Biophysics & Molecular Biology - Review 96(1-3), 19–43 (2008)
Stevenson, W.G.: Ventricular scars and VT tachycardia. Trans. Am. Clin. Assoc. 120, 403–412 (2009)
Bello, D., Fieno, D.S., Kim, R.J., et al.: Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J. Am. College of Cardiology 45(7), 1104–1110 (2005)
Vadakkumpadan, F., Rantner, L., Tice, B., Boyle, P., Prassl, A., Vigmond, E., Plank, G., Trayanova, N.: Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies. J. Electrocardiology 42(2), 15 (2009)
Pop, M., Sermesant, M., Liu, G., Relan, J., Mansi, T., Soong, A., Truong, M.V., Fefer, P., McVeigh, E.R., Delingette, H., Dick, A.J., Ayache, N., Wright, G.A.: Construction of 3D MRI-based computer models of pathologic hearts, augmented with histology and optical imaging to characterize the action potential propagation. Medical Image Analysis 16(2), 505–523 (2012)
Codreanu, A., Odille, F., Aliot, E., et al.: Electro-anatomic characterization of post-infarct scars comparison with 3D myocardial scar reconstruction based on MR imaging. J. Am. Coll. Cardiol. 52, 839–842 (2008)
Wijnmaalen, A., van der Geest, R., van Huls van Taxis, C., Siebelink, H., Kroft, L., Bax, J., Reiber, J., Schalij, M., Zeppenfeld, K.: Head-to-head comparison of contrast-enhanced magnetic resonance imaging and electroanatomical voltage mapping to assess post-infarct scar characteristics in patients with ventricular tachycardias: real-time image integration and reversed registration. European Heart Journal 32, 104 (2011)
Oduneye, S.O., Biswas, L., Ghate, S., Ramanan, V., Barry, J., Laish-FarKash, A., Kadmon, E., Zeidan Shwiri, T., Crystal, E., Wright, G.A.: The feasibility of endocardial propagation mapping using MR guidance in a swine model and comparison with standard electro-anatomical mapping. IEEE Trans. Med. Imaging 31(4), 977–983 (2012) (Epub. November 4, 2011)
Aliev, R., Panfilov, A.V.: A simple two variables model of cardiac excitation. Chaos, Soliton and Fractals 7(3), 293–301 (1996)
Chinchapatnam, P., Rhode, K.S., Ginks, M., Rinaldi, C.A., Lambiase, P., Razavi, R., Arridge, S., Sermesant, M.: Model-Based imaging of cardiac apparent conductivity and local conduction velocity for planning of therapy. IEEE Trans. Med. Imaging 27(11), 1631–1642 (2008)
Lepiller, D., Sermesant, M., Pop, M., Delingette, H., Wright, G.A., Ayache, N.: Cardiac Electrophysiology Model Adjustment Using the Fusion of MR and Optical Imaging. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 678–685. Springer, Heidelberg (2008)
Nash, M.P., Panfilov, A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Molec. Biol. 85, 501–522 (2004)
Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulations. IEEE Transaction in Medical Imaging 25(5), 612–625 (2006)
Keener, J.P., Sneeyd, J.: Mathematical physiology. Springer (1998)
Ten Tusscher, K.H., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286(4) (2004)
Pierre, C.: Preconditioning in bidomain model with almost linear complexity. Journal of Computational Physics 231, 82–97 (2012)
Durrer, D., VanDam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the heart. Circulation 41, 899–912 (1970)
Moreau-Villeger, V., Delingette, H., Sermesant, M., Ashikaga, H., McVeigh, E., Ayache, N.: Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart. IEEE Transactions on Biomedical Engineering 53, 1457–1466 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pop, M. et al. (2013). In vivo Contact EP Data and ex vivo MR-Based Computer Models: Registration and Model-Dependent Errors. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges. STACOM 2012. Lecture Notes in Computer Science, vol 7746. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36961-2_41
Download citation
DOI: https://doi.org/10.1007/978-3-642-36961-2_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36960-5
Online ISBN: 978-3-642-36961-2
eBook Packages: Computer ScienceComputer Science (R0)