Abstract
In this paper, we model learning to rank algorithms based on structural dependencies in hierarchical multi-label text categorization (TC). Our method uses the classification probability of the binary classifiers of a standard top-down approach to generate k-best hypotheses. The latter are generated according to their global probability while at the same time satisfy the structural constraints between father and children nodes. The rank is then refined using Support Vector Machines and tree kernels applied to a structural representation of hypotheses, i.e., a hierarchy tree in which the outcome of binary one-vs-all classifiers is directly marked in its nodes. Our extensive experiments on the whole Reuters Corpus Volume 1 show that our models significantly improve over the state of the art in TC, thanks to the use of structural dependecies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In: SIGIR (2009)
Cai, L., Hofmann, T.: Hierarchical document categorization with support vector machines. In: CIKM (2004)
Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical classification. JMLR (2006)
Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In: ACL (2005)
Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In: ACL (2002)
DeCoro, C., Barutcuoglu, Z., Fiebrink, R.: Bayesian aggregation for hierarchical genre classification. In: International Symposium on Information Retrieval (2007)
Dekel, O., Keshet, J., Singer, Y.: Large margin hierarchical classification. In: ICML (2004)
Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: SIGIR (2000)
Finley, T., Joachims, T.: Parameter learning for loopy markov random fields with structural support vector machines. In: ICML Workshop (2007)
Gopal, S., Yang, Y.: Multilabel classification with meta-level features. In: SIGIR (2010)
Huang, L., Chiang, D.: Better k-best parsing. In: IWPT Workshop (2005)
Joachims, T.: Making large-scale SVM learning practical. Advances in Kernel Methods – Support Vector Learning (1999)
Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: ICML (1997)
Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
Lewis, D.D., Yang, Y., Rose, T., Li, F.: Rcv1: A new benchmark collection for text categorization research. JMLR (2004)
Liu, T.Y., Yang, Y., Wan, H., Zeng, H.J., Chen, Z., Ma, W.Y.: Support vector machines classification with a very large-scale taxonomy. SIGKDD Explorations (2005)
McCallum, A., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classification by shrinkage in a hierarchy of classes. In: ICML (1998)
Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)
Moschitti, A., Ju, Q., Johansson, R.: Modeling topic dependencies in hierarchical text categorization. In: ACL (2012)
Padó, S.: User’s guide to sigf: Significance testing by approximate randomisation (2006)
Punera, K., Ghosh, J.: Enhanced hierarchical classification via isotonic smoothing. In: WWW (2008)
Rifkin, R., Klautau, A.: In defense of one-vs-all classification. JMLR (2004)
Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hierarchical multilabel classification models. JMLR (2006)
Shahbaba, B., Neal, R.M.: Improving classification when a class hierarchy is available using a hierarchy-based prior. Tech. rep., Bayesian Analysis (2005)
Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. In: DMKD (2011)
Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML (2004)
Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. In: TKDE (2011)
Xue, G.R., Xing, D., Yang, Q., Yu, Y.: Deep classification in large-scale text hierarchies. In: SIGIR (2008)
Yeh, A.S.: More accurate tests for the statistical significance of result differences. In: COLING (2000)
Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In: ICML (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ju, Q., Moschitti, A., Johansson, R. (2013). Learning to Rank from Structures in Hierarchical Text Classification. In: Serdyukov, P., et al. Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science, vol 7814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-36973-5_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36972-8
Online ISBN: 978-3-642-36973-5
eBook Packages: Computer ScienceComputer Science (R0)