Skip to main content

Learning to Rank from Structures in Hierarchical Text Classification

  • Conference paper
Advances in Information Retrieval (ECIR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7814))

Included in the following conference series:

Abstract

In this paper, we model learning to rank algorithms based on structural dependencies in hierarchical multi-label text categorization (TC). Our method uses the classification probability of the binary classifiers of a standard top-down approach to generate k-best hypotheses. The latter are generated according to their global probability while at the same time satisfy the structural constraints between father and children nodes. The rank is then refined using Support Vector Machines and tree kernels applied to a structural representation of hypotheses, i.e., a hierarchy tree in which the outcome of binary one-vs-all classifiers is directly marked in its nodes. Our extensive experiments on the whole Reuters Corpus Volume 1 show that our models significantly improve over the state of the art in TC, thanks to the use of structural dependecies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In: SIGIR (2009)

    Google Scholar 

  2. Cai, L., Hofmann, T.: Hierarchical document categorization with support vector machines. In: CIKM (2004)

    Google Scholar 

  3. Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental algorithms for hierarchical classification. JMLR (2006)

    Google Scholar 

  4. Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and MaxEnt discriminative reranking. In: ACL (2005)

    Google Scholar 

  5. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In: ACL (2002)

    Google Scholar 

  6. DeCoro, C., Barutcuoglu, Z., Fiebrink, R.: Bayesian aggregation for hierarchical genre classification. In: International Symposium on Information Retrieval (2007)

    Google Scholar 

  7. Dekel, O., Keshet, J., Singer, Y.: Large margin hierarchical classification. In: ICML (2004)

    Google Scholar 

  8. Dumais, S.T., Chen, H.: Hierarchical classification of web content. In: SIGIR (2000)

    Google Scholar 

  9. Finley, T., Joachims, T.: Parameter learning for loopy markov random fields with structural support vector machines. In: ICML Workshop (2007)

    Google Scholar 

  10. Gopal, S., Yang, Y.: Multilabel classification with meta-level features. In: SIGIR (2010)

    Google Scholar 

  11. Huang, L., Chiang, D.: Better k-best parsing. In: IWPT Workshop (2005)

    Google Scholar 

  12. Joachims, T.: Making large-scale SVM learning practical. Advances in Kernel Methods – Support Vector Learning (1999)

    Google Scholar 

  13. Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: ICML (1997)

    Google Scholar 

  14. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)

    Google Scholar 

  15. Lewis, D.D., Yang, Y., Rose, T., Li, F.: Rcv1: A new benchmark collection for text categorization research. JMLR (2004)

    Google Scholar 

  16. Liu, T.Y., Yang, Y., Wan, H., Zeng, H.J., Chen, Z., Ma, W.Y.: Support vector machines classification with a very large-scale taxonomy. SIGKDD Explorations (2005)

    Google Scholar 

  17. McCallum, A., Rosenfeld, R., Mitchell, T.M., Ng, A.Y.: Improving text classification by shrinkage in a hierarchy of classes. In: ICML (1998)

    Google Scholar 

  18. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Moschitti, A., Ju, Q., Johansson, R.: Modeling topic dependencies in hierarchical text categorization. In: ACL (2012)

    Google Scholar 

  20. Padó, S.: User’s guide to sigf: Significance testing by approximate randomisation (2006)

    Google Scholar 

  21. Punera, K., Ghosh, J.: Enhanced hierarchical classification via isotonic smoothing. In: WWW (2008)

    Google Scholar 

  22. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. JMLR (2004)

    Google Scholar 

  23. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hierarchical multilabel classification models. JMLR (2006)

    Google Scholar 

  24. Shahbaba, B., Neal, R.M.: Improving classification when a class hierarchy is available using a hierarchy-based prior. Tech. rep., Bayesian Analysis (2005)

    Google Scholar 

  25. Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. In: DMKD (2011)

    Google Scholar 

  26. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML (2004)

    Google Scholar 

  27. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multi-label classification. In: TKDE (2011)

    Google Scholar 

  28. Xue, G.R., Xing, D., Yang, Q., Yu, Y.: Deep classification in large-scale text hierarchies. In: SIGIR (2008)

    Google Scholar 

  29. Yeh, A.S.: More accurate tests for the statistical significance of result differences. In: COLING (2000)

    Google Scholar 

  30. Zhou, D., Xiao, L., Wu, M.: Hierarchical classification via orthogonal transfer. In: ICML (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ju, Q., Moschitti, A., Johansson, R. (2013). Learning to Rank from Structures in Hierarchical Text Classification. In: Serdyukov, P., et al. Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science, vol 7814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36973-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36972-8

  • Online ISBN: 978-3-642-36973-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics