Skip to main content

Understanding Relevance: An fMRI Study

  • Conference paper
Advances in Information Retrieval (ECIR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7814))

Included in the following conference series:

  • 3641 Accesses

Abstract

Relevance is one of the key concepts in Information Retrieval (IR). A huge body of research exists that attempts to understand this concept so as to operationalize it for IR systems. Despite advances in the past few decades, answering the question “How does relevance happen?” is still a big challenge. In this paper, we investigate the connection between relevance and brain activity. Using functional Magnetic Resonance Imaging (fMRI), we measured the brain activity of eighteen participants while they performed four topical relevance assessment tasks on relevant and non-relevant images. The results of this experiment revealed three brain regions in the frontal, parietal and temporal cortex where brain activity differed between processing relevant and non-relevant documents. This is an important step in unravelling the nature of relevance and therefore better utilising it for effective retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saracevic, T.: Relevance: A review of the literature and a framework for thinking on the notion in information science. Part II: nature and manifestations of relevance. JASIST 58(13), 1915–1933 (2007)

    Article  Google Scholar 

  2. Mizzaro, S.: Relevance: The whole history. JASIS 48(9), 810–832 (1997)

    Article  Google Scholar 

  3. Koenemann, J., Belkin, N.J.: A case for interaction: a study of interactive information retrieval behavior and effectiveness. In: SIGCHI, pp. 205–212. ACM (1996)

    Google Scholar 

  4. White, R., Kelly, D.: A study on the effects of personalization and task information on implicit feedback performance. In: CIKM, pp. 297–306 (2006)

    Google Scholar 

  5. Arapakis, I., Athanasakos, K., Jose, J.M.: A comparison of general vs personalised affective models for the prediction of topical relevance. In: SIGIR, pp. 371–378 (2010)

    Google Scholar 

  6. White, R.W.: Implicit Feedback for Interactive Information Retrieval. PhD thesis, University of Glasgow (2004)

    Google Scholar 

  7. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR, pp. 154–161 (2005)

    Google Scholar 

  8. Kelly, D., Belkin, N.J.: Display time as implicit feedback: understanding task effects. In: SIGIR, pp. 377–384. ACM (2004)

    Google Scholar 

  9. Nichols, D.M.: Implicit rating and filtering. In: Proceedings of the Fifth DELOS Workshop on Filtering and Collaborative Filtering, pp. 31–36 (1997)

    Google Scholar 

  10. Kelly, D., Belkin, N.: A user modeling system for personalized interaction and tailored retrieval in interactive ir. ASIST 39(1), 316–325 (2005)

    Google Scholar 

  11. Arapakis, I., Moshfeghi, Y., Joho, H., Ren, R., Hannah, D., Jose, J.M.: Enriching user profiling with affective features for the improvement of a multimodal recommender system. In: CIVR (2009)

    Google Scholar 

  12. Lorigo, L., Haridasan, M., Brynjarsdóttir, H., Xia, L., Joachims, T., Gay, G., Granka, L., Pellacini, F., Pan, B.: Eye tracking and online search: Lessons learned and challenges ahead. JASIST 59(7), 1041–1052 (2008)

    Article  Google Scholar 

  13. Arapakis, I., Konstas, I., Jose, J.M.: Using facial expressions and peripheral physiological signals as implicit indicators of topical relevance. In: MM, pp. 461–470 (2009)

    Google Scholar 

  14. Ingwersen, P., Järvelin, K.: The turn: Integration of information seeking and retrieval in context, vol. 18. Springer (2005)

    Google Scholar 

  15. Ogawa, S., Lee, T., Kay, A., Tank, D.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87(24), 9868–9872 (1990)

    Article  Google Scholar 

  16. Friston, K., Buechel, C., Fink, G., Morris, J., Rolls, E., Dolan, R.: Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6, 218–229 (2007)

    Article  Google Scholar 

  17. Robinson, D., Rugg, M.: Latencies of visually responsive neurons in various regions of the rhesus monkey brain and their relation to human visual responses. Biological Psychology 26(1), 111–116 (1988)

    Article  Google Scholar 

  18. Huettel, S., Song, A., McCarthy, G.: Functional Magnetic Resonance Imaging. Sinauer Associates (2009)

    Google Scholar 

  19. Heeger, D., Ress, D., et al.: What does fmri tell us about neuronal activity? Nature Reviews Neuroscience 3(2), 142–151 (2002)

    Article  Google Scholar 

  20. Bandettini, P.: Twenty years of functional mri: The science and the stories. NeuroImage (2012)

    Google Scholar 

  21. Logothetis, N.: What we can do and what we cannot do with fmri. Nature 453(7197), 869–878 (2008)

    Article  Google Scholar 

  22. Goebel, R.: BrainVoyager QX, Vers.2.1, Brain Innovation B.V., Maastricht, Netherlands

    Google Scholar 

  23. Talairach, J., Tournoux, P.: Co-planar stereotaxic atlas of the human brain, vol. 147. Thieme, New York (1988)

    Google Scholar 

  24. Goebel, R., Esposito, F., Formisano, E.: Analysis of functional image analysis contest (fiac) data with brainvoyager qx: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping 27(5), 392–401 (2006)

    Article  Google Scholar 

  25. Forman, S., Cohen, J., Fitzgerald, M., Eddy, W., Mintun, M., Noll, D.: Improved assessment of significant activation in functional magnetic resonance imaging (fmri): use of a cluster-size threshold. MRM 33(5), 636–647 (1995)

    Article  Google Scholar 

  26. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.: Principles of Neural Science, 5th edn. McGraw-Hill (2012)

    Google Scholar 

  27. Peelen, M., Fei-Fei, L., Kastner, S.: Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature 460(7251), 94–97 (2009)

    Article  Google Scholar 

  28. Baddeley, A., Hitch, G., et al.: Working memory. The Psychology of Learning and Motivation 8, 47–89 (1974)

    Article  Google Scholar 

  29. Baddeley, A.: The episodic buffer: a new component of working memory? Trends in Cognitive Sciences 4(11), 417–423 (2000)

    Article  Google Scholar 

  30. Mildner, V.: The Cognitive Neuroscience of Human Communication. Taylor and Francis (2008)

    Google Scholar 

  31. Christophel, T., Hebart, M., Haynes, J.: Decoding the contents of visual short-term memory from human visual and parietal cortex. The Journal of Neuroscience 32(38), 12983–12989 (2012)

    Article  Google Scholar 

  32. Linden, D., Oosterhof, N., Klein, C., Downing, P.: Mapping brain activation and information during category-specific visual working memory. Journal of Neurophysiology 107(2), 628–639 (2012)

    Article  Google Scholar 

  33. Corbetta, M., Shulman, G., et al.: Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3(3), 215–229 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moshfeghi, Y., Pinto, L.R., Pollick, F.E., Jose, J.M. (2013). Understanding Relevance: An fMRI Study. In: Serdyukov, P., et al. Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science, vol 7814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36973-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36972-8

  • Online ISBN: 978-3-642-36973-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics