Skip to main content

Exploiting User Comments for Audio-Visual Content Indexing and Retrieval

  • Conference paper
Advances in Information Retrieval (ECIR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7814))

Included in the following conference series:

Abstract

State-of-the-art content sharing platforms often require users to assign tags to pieces of media in order to make them easily retrievable. Since this task is sometimes perceived as tedious or boring, annotations can be sparse. Commenting on the other hand is a frequently used means of expressing user opinion towards shared media items. This work makes use of time series analyses in order to infer potential tags and indexing terms for audio-visual content from user comments. In this way, we mitigate the vocabulary gap between queries and document descriptors. Additionally, we show how large-scale encyclopaedias such as Wikipedia can aid the task of tag prediction by serving as surrogates for high-coverage natural language vocabulary lists. Our evaluation is conducted on a corpus of several million real-world user comments from the popular video sharing platform YouTube, and demonstrates significant improvements in retrieval performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonso, O., Mizzaro, S.: Can we get rid of trec assessors? using mechanical turk for relevance assessment. In: SIGIR 2009 Workshop on the Future of IR Evaluation (2009)

    Google Scholar 

  2. Ames, M., Naaman, M.: Why we tag: motivations for annotation in mobile and online media. In: SIGCHI 2007 (2007)

    Google Scholar 

  3. Amodeo, G., Amati, G., Gambosi, G.: On relevance, time and query expansion. In: CIKM 2011 (2011)

    Google Scholar 

  4. Budura, A., Michel, S., Cudré-Mauroux, P., Aberer, K.: Neighborhood-Based Tag Prediction. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 608–622. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Cheng, X., Dale, C., Liu, J.: Understanding the Characteristics of Internet Short Video Sharing: YouTube as a Case Study. ArXiv e-prints (2007)

    Google Scholar 

  6. Eck, D., Lamere, P., Bertin-Mahieux, T., Green, S.: Automatic generation of social tags for music recommendation. NIPS 20 (2007)

    Google Scholar 

  7. Eickhoff, C., Harris, C.G., de Vries, A.P., Srinivasan, P.: Quality through flow and immersion: gamifying crowdsourced relevance assessments. In: SIGIR 2012 (2012)

    Google Scholar 

  8. Filippova, K., Hall, K.B.: Improved video categorization from text metadata and user comments. In: SIGIR 2011 (2011)

    Google Scholar 

  9. Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: SIGIR 2008 (2008)

    Google Scholar 

  10. Hiemstra, D.: A probabilistic justification for using tf× idf term weighting in information retrieval. JDL 2000 (2000)

    Google Scholar 

  11. Hu, M., Sun, A., Lim, E.P.: Comments-oriented blog summarization by sentence extraction. In: CIKM 2007 (2007)

    Google Scholar 

  12. Kazai, G.: In Search of Quality in Crowdsourcing for Search Engine Evaluation. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 165–176. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Kleinberg, J.: Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery (4) (2003)

    Google Scholar 

  14. Larson, M., et al.: Automatic tagging and geotagging in video collections and communities. In: ICMR 2011 (2011)

    Google Scholar 

  15. Matsuo, Y., Ishizuka, M.: Keyword extraction from a single document using word co-occurrence statistical information. International Journal on Artificial Intelligence Tools (1) (2004)

    Google Scholar 

  16. Mishne, G., Glance, N.: Leave a reply: An analysis of weblog comments. In: WWE 2006 (2006)

    Google Scholar 

  17. Oghina, A., Breuss, M., Tsagkias, M., de Rijke, M.: Predicting IMDB Movie Ratings Using Social Media. In: Baeza-Yates, R., de Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 503–507. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Ogilvie, P., Callan, J.: Combining document representations for known-item search. In: SIGIR 2003 (2003)

    Google Scholar 

  19. Robertson, S., Zaragoza, H., Taylor, M.: Simple bm25 extension to multiple weighted fields. In: CIKM 2004 (2004)

    Google Scholar 

  20. Siersdorfer, S., San Pedro, J., Sanderson, M.: Automatic video tagging using content redundancy. In: SIGIR 2009 (2009)

    Google Scholar 

  21. Tomokiyo, T., Hurst, M.: A language model approach to keyphrase extraction. In: ACL, Workshop on Multiword Expressions: Analysis, Acquisition and Treatment (2003)

    Google Scholar 

  22. Wartena, C., Brussee, R., Slakhorst, W.: Keyword extraction using word co-occurrence. In: Database and Expert Systems Applications, DEXA (2010)

    Google Scholar 

  23. Wu, L., et al.: Distance metric learning from uncertain side information with application to automated photo tagging. In: ACM Multimedia 2009 (2009)

    Google Scholar 

  24. Yee, W.G., Yates, A., Liu, S., Frieder, O.: Are web user comments useful for search? In: Proc. LSDS-IR (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eickhoff, C., Li, W., de Vries, A.P. (2013). Exploiting User Comments for Audio-Visual Content Indexing and Retrieval. In: Serdyukov, P., et al. Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science, vol 7814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36973-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36972-8

  • Online ISBN: 978-3-642-36973-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics