Skip to main content

Predict Sepsis Level in Intensive Medicine – Data Mining Approach

  • Conference paper
Advances in Information Systems and Technologies

Abstract

This paper aims to support doctor’s decision-making on predicting the Sepsis level. Thus, a set of Data Mining (DM) models were developed using prevision techniques and classification models. These models enable a better doctor’s decision having into account the Sepsis level of the patient. The DM models use real data collected from the Intensive Care Unit of the Santo António Hospital, in Oporto, Portugal. Classification DM models were considered to predict sepsis level in a supervised learning approach. The models were induced making use of the following algorithms: Decision Trees, Support Vector Machines and Naïve Bayes classifier. The models were assessed using the Confusion Matrix, associated metrics, and Cross-validation. The analysis of the total error rate, sensitivity, specificity and accuracy were the metrics used to identify the most relevant measures to predict sepsis level. This work demonstrates that it is possible to predict with great accuracy the sepsis level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mador, R.L., Shaw, N.T.: The impact of a Critical Care Information System (CCIS) on time spent charting and in direct patient care by staff in the ICU: a review of the literature. International Journal of Medical Informatics 78, 435–445 (2009)

    Article  Google Scholar 

  2. Häyrinen, K., Saranto, K., Nykänen, P.: Definition, structure, content, use and impacts of electronic health records: A review of the research literature. International Journal of Medical Informatics 77, 291–304 (2008)

    Article  Google Scholar 

  3. Santos, M.F., Portela, F., Vilas-Boas, M., Machado, J., Abelha, A., Neves, J.: INTCARE - Multi-agent approach for real-time Intelligent Decision Support in Intensive Medicine. In: 3rd International Conference on Agents and Artificial Intelligence, Rome, Italy (2011)

    Google Scholar 

  4. Gago, P., Santos, M.F., Silva, Á., Cortez, P., Neves, J., Gomes, L.: INTCare: a knowledge discovery based intelligent decision support system for intensive care medicine. Journal of Decision Systems (2006)

    Google Scholar 

  5. Portela, F., Santos, M.F., Vilas-Boas, M.: A Pervasive Approach to a Real-Time Intelligent Decision Support System in Intensive Medicine. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds.) IC3K 2010. CCIS, vol. 272, pp. 368–381. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Bardram, J.E., Baldus, H., Favela, J.: Pervasive computing in hospitals. Pervasive Computing in Healthcare, 49–77 (2007)

    Google Scholar 

  7. Varshney, U.: Pervasive healthcare and wireless health monitoring. Mobile Networks and Applications 12, 113–127 (2007)

    Article  Google Scholar 

  8. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  9. O. D. M. Concepts: 11g Release 1 (11.1), Oracle Corp, vol. 2007 (2005)

    Google Scholar 

  10. Tamayo, P., Berger, C., Campos, M., Yarmus, J., Milenova, B., Mozes, A., et al.: Oracle Data Mining. In: Data Mining and Knowledge Discovery Handbook, pp. 1315–1329 (2005)

    Google Scholar 

  11. Portela, F., Santos, M.F.: Data Mining Predictive Models for Pervasive Intelligent Decision Support in Intensive Care Medicine. In: Presented at the KMIS 2012 - International Conference on Knowledge Management and Information Sharing, Barcelona (2012)

    Google Scholar 

  12. Portela, F., Gago, P., Santos, M.F., Silva, A., Rua, F., Machado, J., et al.: Knowledge Discovery for Pervasive and Real-Time Intelligent Decision Support in Intensive Care Medicine. Presented at the KMIS 2011- International Conference on Knowledge Management and Information Sharing, Paris, France (2011)

    Google Scholar 

  13. Portela, F., Santos, M.F., Silva, Á., Machado, J., Abelha, A.: Enabling a Pervasive approach for Intelligent Decision Support in Critical Health Care. Presented at the HCist 2011 – International Workshop on Health and Social Care Information Systems and Technologies, Algarve, Portugal (2011)

    Google Scholar 

  14. SSC, Surviving sepsis campaign (2010), http://www.survivingsepsis.org/Introduction/Pages/default.aspx (website accessed on November 24, 2011)

  15. Bone, R.C., Balk, R.A., Cerra, F.B., Dellinger, R.P., Fein, A.M., Knaus, W.A., Schein, R.M., Sibbald, W.J.: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American college of chest physicians/society of critical care medicine. Chest 101(6), 1644–1655 (1992)

    Google Scholar 

  16. Guy, W.: ECDEU Assessment Manual for Psychopharmacology: 1976. National Institute of Mental Health (1976)

    Google Scholar 

  17. Guy, W.: Clinical global impressions (CGI) scale. Modified from: Rush J., et al. Psychiatric measures (2000)

    Google Scholar 

  18. ODM, Binning (discretization) (2012), http://docs.oracle.com (website accessed on September 20, 2012)

  19. Dellinger, R.P., Levy, M.M., Carlet, J.M., Bion, J., Parker, M.M., Jaeschke, R., Reinhart, K., Angus, D.C., Brun-Buisson, C., Beale, R., et al.: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Medicine 34(1), 17–60 (2008)

    Article  Google Scholar 

  20. Levy, M., Fink, M., Marshall, J., Abraham, E., Angus, D., Cook, D., Cohen, J., Opal, S., Vincent, J., Ramsay, G.: 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Critical Care Medicine 31(4), 1250–1256 (2003a) (Special Articles)

    Article  Google Scholar 

  21. Levy, M., Fink, M., Marshall, J., Abraham, E., Angus, D., Cook, D., Cohen, J., Opal, S., Vincent, J., Ramsay, G.: 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Intensive Care Medicine 29(4), 530–538 (2003b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. C. Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonçalves, J.M.C., Portela, F., Santos, M.F., Silva, Á., Machado, J., Abelha, A. (2013). Predict Sepsis Level in Intensive Medicine – Data Mining Approach. In: Rocha, Á., Correia, A., Wilson, T., Stroetmann, K. (eds) Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36981-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36981-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36980-3

  • Online ISBN: 978-3-642-36981-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics