Skip to main content

On the Size Complexity of Deterministic Frequency Automata

  • Conference paper
Language and Automata Theory and Applications (LATA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7810))

  • 1102 Accesses

Abstract

Austinat, Diekert, Hertrampf, and Petersen [2] proved that every language L that is (m,n)-recognizable by a deterministic frequency automaton such that m > n/2 can be recognized by a deterministic finite automaton as well. First, the size of deterministic frequency automata and of deterministic finite automata recognizing the same language is compared. Then approximations of a language are considered, where a language L′ is called an approximation of a language L if L′ differs from L in only a finite number of strings. We prove that if a deterministic frequency automaton has k states and (m,n)-recognizes a language L, where m > n/2, then there is a language L′ approximating L such that L′ can be recognized by a deterministic finite automaton with no more than k states.

Austinat et al. [2] also proved that every language L over a single-letter alphabet that is (1,n)-recognizable by a deterministic frequency automaton can be recognized by a deterministic finite automaton. For languages over a single-letter alphabet we show that if a deterministic frequency automaton has k states and (1,n)-recognizes a language L then there is a language L′ approximating L such that L′ can be recognized by a deterministic finite automaton with no more that k states. However, there are approximations such that our bound is much higher, i.e., k!.

The research was supported by Grant No. 09.1570 from the Latvian Council of Science and the Invitation Fellowship for Research in Japan S12052 by the Japan Society for the Promotion of Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablaev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be More Effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  2. Austinat, H., Diekert, V., Hertrampf, U., Petersen, H.: Regular frequency computations. Theoretical Computer Science 330(1), 15–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beigel, R., Gasarch, W., Kinber, E.: Frequency computation and bounded queries. Theoretical Computer Science 163(1-2), 177–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Case, J., Kaufmann, S., Kinber, E.B., Kummer, M.: Learning recursive functions from approximations. J. Comput. Syst. Sci. 55(1), 183–196 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Degtev, A.N.: On (m,n)-computable sets. In: Moldavanskij, D.I. (ed.) Algebraic Systems, pp. 88–99. Ivanovo Gos. Universitet (1981) (in Russian)

    Google Scholar 

  6. Freivalds, R.: Recognition of languages with high probability of different classes of automata. Doklady Akademii Nauk SSSR 239(1), 60–62 (1978) (in Russian)

    MathSciNet  Google Scholar 

  7. Freivalds, R.: On the growth of the number of states in result of the determinization of probabilistic finite automata. Avtomatika i Vychislitel’naya Tekhnika 3, 39–42 (1982) (in Russian)

    Google Scholar 

  8. Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Bārzdiņš, J., Bjørner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  9. Freivalds, R.: Non-constructive methods for finite probabilistic automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harizanov, V., Kummer, M., Owings, J.: Frequency computations and the cardinality theorem. The Journal of Symbolic Logic 57(2) (1992)

    Google Scholar 

  11. Hinrichs, M., Wechsung, G.: Time bounded frequency computations. Information and Computation 139(2), 234–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison–Wesley Publishing Company, Reading (1979)

    MATH  Google Scholar 

  13. Kinber, E.B.: Frequency computations in finite automata. Cybernetics and Systems Analysis 12(2), 179–187 (1976)

    Google Scholar 

  14. Kinber, E.B.: Frequency calculations of general recursive predicates and frequency enumerations of sets. Soviet Mathematics Doklady 13, 873–876 (1972)

    MATH  Google Scholar 

  15. Kummer, M.: A proof of Beigel’s cardinality conjecture. The Journal of Symbolic Logic 57(2), 677–681 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. McNaughton, R.: The theory of automata, a survey. Advances in Computers 2, 379–421 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of Research and Development 3(2), 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  18. Rose, G.F.: An extended notion of computability. In: International Congress for Logic, Methodology and Philosophy of Science, Stanford University, Stanford, California, August 24-September 2 (1960); Abstracts of contributed papers

    Google Scholar 

  19. Tantau, T.: Towards a Cardinality Theorem for Finite Automata. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 625–636. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Trakhtenbrot, B.A.: On the frequency computation of functions. Algebra i Logika 2(1), 25–32 (1964) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freivalds, R., Zeugmann, T., Pogosyan, G.R. (2013). On the Size Complexity of Deterministic Frequency Automata. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2013. Lecture Notes in Computer Science, vol 7810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37064-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37064-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37063-2

  • Online ISBN: 978-3-642-37064-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics