Skip to main content

Supervising Random Forest Using Attribute Interaction Networks

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2013)

Abstract

Genome-wide association studies (GWAS) have become a powerful and affordable tool to study the genetic variations associated with common human diseases. However, only few of the loci found are associated with a moderate or large increase in disease risk and therefore using GWAS findings to study the underlying biological mechanisms remains a challenge. One possible cause for the “missing heritability” is the gene-gene interactions or epistasis. Several methods have been developed and among them Random Forest (RF) is a popular one. RF has been successfully applied in many studies. However, it is also known to rely on marginal main effects. Meanwhile, networks have become a popular approach for characterizing the space of pairwise interactions systematically, which can be informative for classification problems. In this study, we compared the findings of Mutual Information Network (MIN) to that of RF and observed that the variables identified by the two methods overlap with differences. To integrate advantages of MIN into RF, we proposed a hybrid algorithm, MIN-guided RF (MINGRF), which overlays the neighborhood structure of MIN onto the growth of trees. After comparing MINGRF to the standard RF on a bladder cancer dataset, we conclude that MINGRF produces trees with a better accuracy at a smaller computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrei, A., Kendziorski, C.: An efficient method for identifying statistical interactors in gene association networks. Biostatistics 10(4), 706–718 (2009)

    Article  Google Scholar 

  2. Andrew, A.S., Nelson, H.H., Kelsey, K.T., Moore, J.H., Meng, A.C., Casella, D.P., Tosteson, T.D., Schned, A.R., Karagas, M.R.: Concordance of multiple analytical approaches demonstrates a complex relationship between dna repair gene snps, smoking and bladder cancer susceptibility. Carcinogenesis 27(5), 1030–1037 (2006)

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Bureau, A., Dupuis, J., Falls, K., Lunetta, K.L., Hayward, B., Keith, T.P., Van Eerdewegh, P.: Identifying snps predictive of phenotype using random forests. Genet. Epidemiol. 28(2), 171–182 (2005)

    Article  Google Scholar 

  5. Bylander, T.: Estimating generalization error on two-class datasets using out-of-bag estimates. Machine Learning 48, 287–297 (2002)

    Article  MATH  Google Scholar 

  6. Chen, X., Ishwaran, H.: Random forests for genomic data analysis. Genomics 99(6), 323–329 (2012)

    Article  Google Scholar 

  7. Chu, J.H., Weiss, S.T., Carey, V.J., Raby, B.A.: A graphical model approach for inferring large-scale networks integrating gene expression and genetic polymorphism. BMC Syst. Biol. 3, 55 (2009)

    Article  Google Scholar 

  8. Cordell, H.J.: Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum. Mol. Genet. 11(20), 2463–2468 (2002)

    Article  Google Scholar 

  9. Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley (2006)

    Google Scholar 

  10. Diaz-Uriarte, R., Alvarez de Andres, S.: Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7, 3 (2006)

    Article  Google Scholar 

  11. Eichler, E.E., Flint, J., Gibson, G., Kong, A., Leal, S.M., Moore, J.H., Nadeau, J.H.: Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11(6), 446–450 (2010)

    Article  Google Scholar 

  12. Franke, A., McGovern, D.P.B., Barrett, J.C., Wang, K., Radford-Smith, G.: Genome-wide meta-analysis increases to 71 the number of confirmed crohn’s disease susceptibility loci. Nat. Genet. 42(12), 1118–1125 (2010)

    Article  Google Scholar 

  13. Greene, C.S., Himmelstein, D.S., Nelson, H.H., Kelsey, K.T., Williams, S.M., Andrew, A.S., Karagas, M.R., Moore, J.H.: Enabling personal genomics with an explicit test of epistasis. In: Pac. Symp. Biocomput., pp. 327–336 (2010)

    Google Scholar 

  14. Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6(2), 95–108 (2005)

    Article  Google Scholar 

  15. Hu, T., Sinnott-Armstrong, N.A., Kiralis, J.W., Andrew, A.S., Karagas, M.R., Moore, J.H.: Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics 12(364) (2011)

    Google Scholar 

  16. Ideker, T., Sharan, R.: Protein networks in disease. Genome Res. 18(4), 644–652 (2008)

    Article  Google Scholar 

  17. Karagas, M.R., Tosteson, T.D., Blum, J., Morris, J.S., Baron, J.A., Klaue, B.: Design of an epidemiologic study of drinking water arsenic exposure and skin and bladdder cancer risk in a U.S. population. Environ. Health Perspect. 106(suppl. 4), 1047–1050 (1998)

    Google Scholar 

  18. Lavender, N.A., Rogers, E.N., Yeyeodu, S., Rudd, J., Hu, T., Zhang, J., Brock, G.N., Kimbro, K.S., Moore, J.H., Hein, D.W., Kidd, L.C.R.: Interaction among apoptosis-associated sequence variants and joint effects on aggressive prostate cancer. BMC Med. Genomics 5, 11 (2012)

    Article  Google Scholar 

  19. Malley, J.D., Kruppa, J., Dasgupta, A., Malley, K.G., Ziegler, A.: Probability machines: Consistent probability estimation using nonparametric learning machines. Methods Inf. Med. 10(51), 74–81 (2011)

    Article  Google Scholar 

  20. Manolio, T.A.: Genomewide association studies and assessment of risk of disease. New England Journal of Medicine 363(2), 166–176 (2010)

    Article  Google Scholar 

  21. McKinney, B.A., Reif, D.M., Ritchie, M.D., Moore, J.H.: Machine learning for detecting gene-gene interactions: a review. Appl. Bioinformatics 5(2), 77–88 (2006)

    Article  Google Scholar 

  22. Moore, J.H., Asselbergs, F.W., Williams, S.M.: Bioinformatics challenges for genome-wide association studies. Bioinformatics 26(4), 445–455 (2010)

    Article  Google Scholar 

  23. Moore, J.H., Williams, S.M.: Epistasis and its implications for personal genetics. Am. J. Hum. Genet. 85(3), 309–320 (2009)

    Article  Google Scholar 

  24. Newman, M.: Networks: An introduction. Oxford University Press (2010)

    Google Scholar 

  25. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69(1), 138–147 (2001)

    Article  Google Scholar 

  26. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  27. Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A.: Conditional variable importance for random forests. BMC Bioinformatics 9(307) (2008), doi:10.1186/1471–2105–9–307

    Google Scholar 

  28. Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bia in random forest variable importance measures: Illustration, sources and a solution. BMC Bioinformatics 8(25) (2007), doi:10.1186/1471–2105–8–25

    Google Scholar 

  29. Velez, D.R., White, B.C., Motsinger, A.A., Bush, W.S., Ritchie, M.D., Williams, S.M., Moore, J.H.: A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genetic Epidemiology 31(4), 306–315 (2007)

    Article  Google Scholar 

  30. Wang, W.Y.S., Barratt, B.J., Clayton, D.G., Todd, J.A.: Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6(2), 109–118 (2005)

    Article  Google Scholar 

  31. Williams, S.M., Canter, J.A., Crawford, D.C., Moore, J.H., Ritchie, M.D., Haines, J.L.: Problems with genome-wide association studies. Science 316(5833), 1840–1842 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pan, Q., Hu, T., Malley, J.D., Andrew, A.S., Karagas, M.R., Moore, J.H. (2013). Supervising Random Forest Using Attribute Interaction Networks. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics