Skip to main content

Dimensionality Reduction via Isomap with Lock-Step and Elastic Measures for Time Series Gene Expression Classification

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7833))

Abstract

Isometric feature mapping (Isomap) has proven high potential for nonlinear dimensionality reduction in a wide range of application domains. Isomap finds low-dimensional data projections by preserving global geometrical properties, which are expressed in terms of the Euclidean distances among points. In this paper we investigate the use of a recent variant of Isomap, called double-bounded tree-connected Isomap (dbt-Isomap), for dimensionality reduction in the context of time series gene expression classification. In order to deal with the projection of temporal sequences dbt-Isomap is combined with different lock-step and elastic measures which have been extensively proposed to evaluate time series similarity. These are represented by three \(\mathcal L_p\)-norms, dynamic time warping and the distance based on the longest common subsequence model. Computational experiments concerning the classification of two time series gene expression data sets showed the usefulness of dbt-Isomap for dimensionality reduction. Moreover, they highlighted the effectiveness of \(\mathcal L_1\)-norm which appeared as the best alternative to the Euclidean metric for time series gene expression embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peddada, S., Lobenhofer, E., Li, L., Afshari, C., Weinberg, C., Umbach, D.: Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19, 834–841 (2003)

    Article  Google Scholar 

  2. Hamadeh, H., Bushel, P., Paules, R., Afshari, C.: Discovery in toxicology: mediation by gene expression array technology. Journal of Biochemical and Molecular Toxicology 15, 231–242 (2001)

    Article  Google Scholar 

  3. Baranzini, S., Mousavi, P., Rio, J., Caillier, S., Stillman, A., Villoslada, P., Wyatt, M., Comabella, M., Greller, L., Somogyi, R., Montalban, X., Oksenberg, J.: Transcription-based prediction of response to IFNβ using supervised computational methods. PLoS Biology 3, 166–176 (2005)

    Article  Google Scholar 

  4. Jolliffe, I.T.: Principal component analysis. Springer, New York (1986)

    Book  Google Scholar 

  5. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  6. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  7. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  8. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  9. Orsenigo, C., Vercellis, C.: A comparative study of nonlinear manifold learning methods for cancer microarray data classification. Expert Systems with Applications 40, 2189–2197 (2013)

    Article  Google Scholar 

  10. Mizuhara, Y., Hayashi, A., Suematsu, N.: Embedding of Time Series Data by Using Dynamic Time Warping Distances. Systems and Computers in Japan 37, 241–249 (2006)

    Article  Google Scholar 

  11. Balasubramanian, M., Schwartz, E.L., Tenenbaum, J.B., de Silva, V., Langford, J.C.: The Isomap algorithm and topological stability. Science 295, 7 (2002)

    Article  Google Scholar 

  12. Orsenigo, C., Vercellis, C.: An effective double-bounded tree-connected Isomap algorithm for microarray data classification. Pattern Recognition Letters 33, 9–16 (2012)

    Article  Google Scholar 

  13. Dawson, K., Rodriguez, R.L., Malyj, W.: Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm. BMC Bioinformatics 6, 195 (2005)

    Article  Google Scholar 

  14. Park, H.: ISOMAP induced manifold embedding and its application to Alzheimer’s disease and mild cognitive impairment. Neuroscience Letters 513, 141–145 (2012)

    Article  Google Scholar 

  15. Geng, X., Zhan, D.C., Zhou, Z.H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 35, 1098–1107 (2005)

    Article  Google Scholar 

  16. Orsenigo, C., Vercellis, C.: Kernel ridge regression for out-of-sample mapping in supervised manifold learning. Expert Systems with Applications 39, 7757–7762 (2012)

    Article  Google Scholar 

  17. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery (2012), doi:10.1007/s10618-012-0250-5

    Google Scholar 

  18. Yi, B.-K., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: Proc. of the 26th International Conference on Very Large Data Bases, pp. 385–394. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  19. Sakoe, H., Chiba, C.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26, 43–49 (1978)

    Article  MATH  Google Scholar 

  20. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowledge and Information Systems 7, 358–386 (2004)

    Article  Google Scholar 

  21. Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., Keogh, E.: Indexing multidimensional time-series. The VLDB Journal 15, 1–20 (2006)

    Article  Google Scholar 

  22. Orsenigo, C., Vercellis, C.: Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification. Pattern Recognition 43, 3787–3794 (2010)

    Article  MATH  Google Scholar 

  23. Keogh, E.J., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowledge and Information Systems 7, 358–386 (2005)

    Article  Google Scholar 

  24. Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: Proc. of the 18th International Conference on Data Engineering, pp. 673–684. IEEE Computer Society, Washington (2002)

    Chapter  Google Scholar 

  25. Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orsenigo, C., Vercellis, C. (2013). Dimensionality Reduction via Isomap with Lock-Step and Elastic Measures for Time Series Gene Expression Classification. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics