Skip to main content

An Evolutionary Approach for Automatic Seedpoint Setting in Brain Fiber Tracking

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7835))

Included in the following conference series:

  • 2924 Accesses

Abstract

In this paper we present an evolutionary approach for optimising the seedpoint setting in brain fiber tracking. Our aim is to use Diffusion Tensor Imaging (DTI) data and Diffusion Magnetic Resonance Imaging (dMRI) data for feeding an automatic fiber tracking approach. Our work focusses on customising an evolutionary algorithm to find nerve fibers within diffusion data and allocate an appropriate number of seedpoints to them. This is necessary for the subsequent fiber reconstruction algorithms to work. The algorithm considerably enhances the speed and quality of the reconstruction and proves to be promising in leading to an automatic fiber tracking procedure used in medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basser, P., Mattiello, J., LeBihan, D.: MR Diffusion Tensor Spectroscopy and Imaging. Biophys. J. V. 66 (1994)

    Google Scholar 

  2. Chung, H.-W., Chou, M.-C., Chen, C.-Y.: Principles and Limitations of Computational Algorithms in Clinical Diffusion Tensor MR Tractography. J. Neuroradiol. 32, 3–13 (2011)

    Article  Google Scholar 

  3. Kroon, D.-J.: DTI and Fiber Tracking, http://www.mathworks.com/matlabcentral/fileexchange/21130-dti-and-fiber-tracking

  4. Giancoli, D.C.: Physics for Scientists and Engineers, ch. 18. Prentice Hall (2000)

    Google Scholar 

  5. Hattlingen, E., Rathert, J., Jurcoane, A., Weidauer, S., Szelenyi, A., Ogrezeanu, G., Seifert, V., Zanella, F.E., Gasser, T.: A standardised evaluation of pre-surgical imaging of the corticospinal tract: where to place the seed ROI. Neurosurg. 32, 445–456 (2009)

    Article  Google Scholar 

  6. Jose-Revuelta, L.M.S.: A Hybrid GA-TS Technique with Dynamic Operators and its Application to Channel Equalization and Fiber Tracking. In: Jaziri, W. (ed.) Tabu Search. InTech (2008)

    Google Scholar 

  7. LeBihan, D., Mangin, J.-F., Poupon, C., Clark, C., Pappata, S., Molko, N., Chabriat, H.: Diffusion Tensor Imaging: Concepts and Applications. J. of M.R.I. 13, 534–546 (2001)

    Google Scholar 

  8. Mori, S., Van Zijl, P.C.M.: Fiber Tracking: Principles and Strategies. NMR Biomed. 15, 468–480 (2002)

    Article  Google Scholar 

  9. Mukherjee, P., Berman, J.I., Chung, S.W., Hess, C.P., Henry, R.G.: Diffusion Tensor MR Imaging and Fiber Tractography: Theoretic Underpinnings. AJNR 29, 632–641 (2008)

    Article  Google Scholar 

  10. Wu, X., Xu, Q., Xu, L., Zhou, J., Anderson, A.W., Ding, Z.: Genetic White Matter Fiber Tractography with Global Optimization. J. Neurosci. Meth. 184, 375–379 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pilic, T., Richter, H. (2013). An Evolutionary Approach for Automatic Seedpoint Setting in Brain Fiber Tracking. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37192-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37191-2

  • Online ISBN: 978-3-642-37192-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics