Abstract
In this paper we present an evolutionary approach for optimising the seedpoint setting in brain fiber tracking. Our aim is to use Diffusion Tensor Imaging (DTI) data and Diffusion Magnetic Resonance Imaging (dMRI) data for feeding an automatic fiber tracking approach. Our work focusses on customising an evolutionary algorithm to find nerve fibers within diffusion data and allocate an appropriate number of seedpoints to them. This is necessary for the subsequent fiber reconstruction algorithms to work. The algorithm considerably enhances the speed and quality of the reconstruction and proves to be promising in leading to an automatic fiber tracking procedure used in medical imaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Basser, P., Mattiello, J., LeBihan, D.: MR Diffusion Tensor Spectroscopy and Imaging. Biophys. J. V. 66 (1994)
Chung, H.-W., Chou, M.-C., Chen, C.-Y.: Principles and Limitations of Computational Algorithms in Clinical Diffusion Tensor MR Tractography. J. Neuroradiol. 32, 3–13 (2011)
Kroon, D.-J.: DTI and Fiber Tracking, http://www.mathworks.com/matlabcentral/fileexchange/21130-dti-and-fiber-tracking
Giancoli, D.C.: Physics for Scientists and Engineers, ch. 18. Prentice Hall (2000)
Hattlingen, E., Rathert, J., Jurcoane, A., Weidauer, S., Szelenyi, A., Ogrezeanu, G., Seifert, V., Zanella, F.E., Gasser, T.: A standardised evaluation of pre-surgical imaging of the corticospinal tract: where to place the seed ROI. Neurosurg. 32, 445–456 (2009)
Jose-Revuelta, L.M.S.: A Hybrid GA-TS Technique with Dynamic Operators and its Application to Channel Equalization and Fiber Tracking. In: Jaziri, W. (ed.) Tabu Search. InTech (2008)
LeBihan, D., Mangin, J.-F., Poupon, C., Clark, C., Pappata, S., Molko, N., Chabriat, H.: Diffusion Tensor Imaging: Concepts and Applications. J. of M.R.I. 13, 534–546 (2001)
Mori, S., Van Zijl, P.C.M.: Fiber Tracking: Principles and Strategies. NMR Biomed. 15, 468–480 (2002)
Mukherjee, P., Berman, J.I., Chung, S.W., Hess, C.P., Henry, R.G.: Diffusion Tensor MR Imaging and Fiber Tractography: Theoretic Underpinnings. AJNR 29, 632–641 (2008)
Wu, X., Xu, Q., Xu, L., Zhou, J., Anderson, A.W., Ding, Z.: Genetic White Matter Fiber Tractography with Global Optimization. J. Neurosci. Meth. 184, 375–379 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pilic, T., Richter, H. (2013). An Evolutionary Approach for Automatic Seedpoint Setting in Brain Fiber Tracking. In: Esparcia-Alcázar, A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37192-9_40
Download citation
DOI: https://doi.org/10.1007/978-3-642-37192-9_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37191-2
Online ISBN: 978-3-642-37192-9
eBook Packages: Computer ScienceComputer Science (R0)