Abstract
Recent advances in the automation of metabolic model reconstruction have led to the availability of draft-quality metabolic models (predicted reaction complements) for multiple bacterial species. These reaction complements can be considered as trait representations and can be used for ancestral state reconstruction, to infer the most likely metabolic complements of common ancestors of all bacteria with generated metabolic models. We present here an ancestral state reconstruction for 141 extant bacteria and analyse the reaction gains and losses for these bacteria with respect to their lifestyles and pathogenic nature. A simulated annealing approach is used to look at coordinated metabolic gains and losses in two bacteria. The main losses of Onion yellows phytoplasma OY-M, an obligate intracellular pathogen, are shown (as expected) to be in cell wall biosynthesis. The metabolic gains made by Clostridium difficile CD196 in adapting to its current habitat in the human colon is also analysed. Our analysis shows that the capability to utilize N-Acetyl-neuraminic acid as a carbon source has been gained, rather than having been present in the Clostridium ancestor, as has the capability to synthesise phthiocerol dimycocerosate which could potentially aid the evasion of the host immune response. We have shown that the availability of large numbers of metabolic models, along with conventional approaches, has enabled a systematic method to analyse metabolic evolution in the bacterial domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mithani, A., Preston, G.M., Hein, J.: A Bayesian Approach to the Evolution of Metabolic Networks on a Phylogeny. PLoS Computational Biology 6(8), e1000868 (2010)
Mazurie, A., Bonchev, D., Schwikowski, B.: Evolution of metabolic network organization. BMC Systems Biology 4(59) (2010)
Pfeiffer, T., Soyer, O.S., Bonhoeffer, S.: The evolution of connectivity in metabolic networks. PLoS Biology 3(7) (2005)
Pál, C., Papp, B., Lercher, M.J.: Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nature Genetics 37(12), 1372–1375 (2005)
Yagi, J.M., Sims, D., Brettin, T., Bruce, D., Madsen, E.L.: The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environmental Microbiology 11(9), 2253–2270 (2009)
Petridis, M., Bagdasarian, M., Waldor, M.K., Walker, E.: Horizontal transfer of Shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. Journal of Medical Entomology 43(2), 288–295 (2006)
Zomorodipour, A., Andersson, S.G.E.: Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Letters 452(1), 11–15 (1999)
Schluter, D., Price, T., Mooers, A.Ø., Ludwig, D.: Likelihood of ancestor states in adaptive radiation. Evolution 51, 1699–1711 (1997)
Latysheva, N., Junker, V.L., Palmer, W.J., Codd, G.A., Barker, D.: The evolution of nitrogen fixation in cyanobacteria. Bioinformatics 28(5), 603–606 (2012)
Merhej, V., Royer-Carenzi, M., Pontarotti, P., Raoult, D.: Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biology Direct 4(13) (2009)
Baumler, D.J., Peplinski, R.G., Reed, J.L., Glasner, J.D., Perna, N.T.: The evolution of metabolic networks of E. coli. BMC Systems Biology 5(1), 182 (2011)
Liao, L., Kim, S., Francois Tomb, J.: Genome comparisons based on profiles of metabolic pathways. In: Proceedings of the 6th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2002, pp. 469–476 (2002)
Whitaker, J.W., Letunic, I., McConkey, G.A., Westhead, D.R.: metaTIGER: a metabolic evolution resource. Nucleic Acids Research 37(Database issue), D531–D538 (2009)
Henry, C.S., DeJongh, M., Best, A.A., Frybarger, P.M., Linsay, B., Stevens, R.L.: High-throughput generation, optimization and analysis of genome-scale metabolic models. Nature Biotechnology 28(9), 969–974 (2010)
Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl. 1), S233–S240 (2002)
Katoh, K., Asimenos, G., Toh, H.: Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology 537, 39–64 (2009)
Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3), 307–321 (2010)
Huson, D., Richter, D., Rausch, C., Dezulian, T.: Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8(460) (2007)
Zientz, E., Dandekar, T., Gross, R.: Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiology and Molecular Biology Reviews 68(4), 745–770 (2004)
Maddison, W.P., Maddison, D.R.: Mesquite: a modular system for evolutionary analysis. Version 2.75 (2011), http://mesquiteproject.org
Pagel, M.: The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48(3) (1999)
Swofford, D.L.: PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts (2003)
Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–218 (1985)
Felsenstein, J.: Phylip, http://evolution.genetics.washington.edu/phylip.html
Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.Y., Wei, W.: Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36(1), 27–29 (2003)
Cox, J.S., Chen, B., McNeil, M., Jacobs, W.R.: Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402(6757), 79–83 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Faruqi, A.A., Bryant, W.A., Pinney, J.W. (2013). Analysis of Metabolic Evolution in Bacteria Using Whole-Genome Metabolic Models. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-37195-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37194-3
Online ISBN: 978-3-642-37195-0
eBook Packages: Computer ScienceComputer Science (R0)