Abstract
An apprenticeship-learning-based technique is used as a hyper-heuristic to generate heuristics for an online combinatorial problem. It observes and learns from the actions of a known-expert heuristic on small instances, but has the advantage of producing a general heuristic that works well on other larger instances. Specifically, we generate heuristic policies for online bin packing problem by using expert near-optimal policies produced by a hyper-heuristic on small instances, where learning is fast. The ”expert” is a policy matrix that defines an index policy, and the apprenticeship learning is based on observation of the action of the expert policy together with a range of features of the bin being considered, and then applying a k-means classification. We show that the generated policy often performs better than the standard best-fit heuristic even when applied to instances much larger than the training set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, pp. 1–8. ACM, New York (2004)
Alpaydin, E.: Introduction to Machine Learning (Adaptive Computation and Machine Learning). The MIT Press (2004)
Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: A survey of the state of the art. Tech. Rep. No. NOTTCS-TR-SUB-0906241418-2747, School of Computer Science and Information Technology, University of Nottingham (2010)
Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A Classification of Hyper-heuristic Approaches. In: Handbook of Metaheuristics. International Series in Operations Research & Management Science. Springer (2009)
Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.R.: The scalability of evolved on line bin packing heuristics. In: Srinivasan, D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, pp. 2530–2537. IEEE Computational Intelligence Society, IEEE Press, Singapore (2007)
Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1559–1565. ACM, New York (2007)
Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-Rodriguez, J.: Hyflex: A flexible framework for the design and analysis of hyper-heuristics. In: Proceedings of the Multidisciplinary International Scheduling Conference (MISTA 2009), pp. 790–797 (2009)
Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)
Crowston, W.B., Glover, F., Thompson, G.L., Trawick, J.D.: Probabilistic and parametric learning combinations of local job shop scheduling rules. ONR Research memorandum No. 117, GSIA, Carnegie Mellon University, Pittsburgh (1963)
Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Industrial Scheduling, pp. 225–251. Prentice-Hall (1963)
Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: A new hyper-heuristic as a general problem solver: An implementation in HyFlex. Journal of Scheduling (2012)
Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau, M., Kendall, G., McCollum, B., Parkes, A.J., Petrovic, S., Burke, E.K.: HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)
Özcan, E., Bilgin, B., Korkmaz, E.: A comprehensive analysis of hyper-heuristics. Intell. Data Anal. 12, 3–23 (2008)
Özcan, E., Parkes, A.J.: Policy matrix evolution for generation of heuristics. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 2011–2018. ACM, New York (2011)
Parkes, A.J., Özcan, E., Hyde, M.R.: Matrix Analysis of Genetic Programming Mutation. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 158–169. Springer, Heidelberg (2012)
Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch. 17, pp. 529–556. Springer (2005)
Ross, P., Marín-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K.A., Jonoska, N., Miller, J. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1295–1306. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Asta, S., Özcan, E., Parkes, A.J., Etaner-Uyar, A.Ş. (2013). Generalizing Hyper-heuristics via Apprenticeship Learning. In: Middendorf, M., Blum, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2013. Lecture Notes in Computer Science, vol 7832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37198-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-37198-1_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37197-4
Online ISBN: 978-3-642-37198-1
eBook Packages: Computer ScienceComputer Science (R0)