Skip to main content

Solving the Virtual Network Mapping Problem with Construction Heuristics, Local Search and Variable Neighborhood Descent

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7832))

Abstract

The Virtual Network Mapping Problem arises in the context of Future Internet research. Multiple virtual networks with different characteristics are defined to suit specific applications. These virtual networks, with all of the resources they require, need to be realized in one physical network in a most cost effective way. Two properties make this problem challenging: Already finding any valid mapping of all virtual networks into the physical network without exceeding the resource capacities is NP-hard, and the problem consists of two strongly dependent stages as the implementation of a virtual network’s connections can only be decided once the locations of the virtual nodes in the physical network are fixed. In this work we introduce various construction heuristics, Local Search and Variable Neighborhood Descent approaches and perform an extensive computational study to evaluate the strengths and weaknesses of each proposed solution method.

This work has been funded by the Vienna Science and Technology Fund (WWTF) through project ICT10-027.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the Internet impasse through virtualization. Computer 38(4), 34–41 (2005)

    Article  Google Scholar 

  2. Berl, A., Fischer, A., de Meer, H.: Virtualisierung im Future Internet. Informatik-Spektrum 33, 186–194 (2010)

    Article  Google Scholar 

  3. Carlson, M., Weiss, W., Blake, S., Wang, Z., Black, D., Davies, E.: An architecture for differentiated services. IETF, RFC 2475 (1998)

    Google Scholar 

  4. Chowdhury, N.M.K., Boutaba, R.: A survey of network virtualization. Computer Networks 54(5), 862–876 (2010)

    Article  MATH  Google Scholar 

  5. Chowdhury, N., Rahman, M., Boutaba, R.: Virtual network embedding with coordinated node and link mapping. In: INFOCOM 2009, pp. 783–791 (2009)

    Google Scholar 

  6. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bowman, M.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM Comput. Commun. Rev. 33, 3–12 (2003)

    Article  Google Scholar 

  7. GENI.net: Global Environment for Network Innovations (2012), http://www.geni.net

  8. Gouveia, L., Paias, A., Sharma, D.: Modeling and solving the rooted distance-constrained minimum spanning tree problem. Computers & Operations Research 35(2), 600–613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private network: a network design problem for multicommodity flow. In: STOC 2001, pp. 389–398 (2001)

    Google Scholar 

  10. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Houidi, I., Louati, W., Zeghlache, D.: A distributed virtual network mapping algorithm. In: IEEE International Conference on Communications, ICC 2008, pp. 5634–5640 (2008)

    Google Scholar 

  12. IBM ILOG: CPLEX 12.4, http://www-01.ibm.com/software/integration/optimization/cplex-optimizer

  13. Inführ, J., Raidl, G.R.: Data supplement, https://www.ads.tuwien.ac.at/projects/optFI-wiki/images/a/a7/DataSupplement.pdf

  14. Inführ, J., Raidl, G.R.: The Virtual Network Mapping Problem benchmark set, https://www.ads.tuwien.ac.at/projects/optFI/

  15. Inführ, J., Raidl, G.R.: Introducing the Virtual Network Mapping Problem with Delay, Routing and Location Constraints. In: Pahl, J., Reiners, T., Voß, S. (eds.) INOC 2011. LNCS, vol. 6701, pp. 105–117. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Knight, S., Nguyen, H., Falkner, N., Roughan, M.: Realistic network topology construction and emulation from multiple data sources. Tech. rep., The University of Adelaide (2012)

    Google Scholar 

  17. Lu, J., Turner, J.: Efficient mapping of virtual networks onto a shared substrate. Tech. rep., Washington University in St. Louis (2006)

    Google Scholar 

  18. National Research Council: Looking Over the Fence at Networks. National Academy Press (2001)

    Google Scholar 

  19. Ramakrishnan, K.K., Floyd, S., Black, D.: The addition of explicit congestion notification (ECN) to IP. IETF, RFC 3168 (2001)

    Google Scholar 

  20. Razzaq, A., Rathore, M.S.: An approach towards resource efficient virtual network embedding. In: Proceedings of the 2010 2nd International Conference on Evolving Internet, INTERNET 2010, pp. 68–73. IEEE Computer Society (2010)

    Google Scholar 

  21. Ricci, R., Alfeld, C., Lepreau, J.: A solver for the network testbed mapping problem. Special Interest Group on Data Communication Comput. Commun. Rev. 33(2), 65–81 (2003)

    Article  Google Scholar 

  22. Schwerdel, D., Günther, D., Henjes, R., Reuther, B., Müller, P.: German-Lab Experimental Facility. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.) FIS 2010. LNCS, vol. 6369, pp. 1–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Szeto, W., Iraqi, Y., Boutaba, R.: A multi-commodity flow based approach to virtual network resource allocation. In: Global Telecommunications Conference, GLOBECOM 2003, vol. 6, pp. 3004–3008. IEEE (2003)

    Google Scholar 

  24. Yeow, W.L., Westphal, C., Kozat, U.: Designing and embedding reliable virtual infrastructures. In: Proceedings of the Second ACM Special Interest Group on Data Communication Workshop on Virtualized Infrastructure Systems and Architectures, VISA 2010, pp. 33–40. ACM, New York (2010)

    Chapter  Google Scholar 

  25. Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to virtual network components. In: Proceedings of the 25th IEEE International Conference on Computer Communications, INFOCOM 2006, pp. 1–12 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inführ, J., Raidl, G.R. (2013). Solving the Virtual Network Mapping Problem with Construction Heuristics, Local Search and Variable Neighborhood Descent. In: Middendorf, M., Blum, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2013. Lecture Notes in Computer Science, vol 7832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37198-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37198-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37197-4

  • Online ISBN: 978-3-642-37198-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics