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Abstract. The Markov Chain Monte Carlo (MCMC) family of meth-
ods form a valuable part of the toolbox of social modeling and prediction
techniques, enabling modelers to generate samples and summary statis-
tics of a population of interest with minimal information. It has been
used successfully to model changes over time in many types of social
systems, including patterns of disease spread, adolescent smoking, and
geopolitical conflicts. In MCMC an initial proposal distribution is itera-
tively refined until it approximates the posterior distribution. However,
the selection of the proposal distribution can have a significant impact
on model convergence. In this paper, we propose a new hybrid modeling
technique in which an agent-based model is used to initialize the pro-
posal distribution of the MCMC simulation. We demonstrate the use of
our modeling technique in an urban transportation prediction scenario
and show that the hybrid combined model produces more accurate pre-
dictions than either of the parent models.
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1 Introduction

Markov chain Monte Carlo (MCMC) simulation is a simple, easily parallelizable
methodology for estimating the summary statistics of a population from minimal
information. The aim of the process is to approximate the posterior distribution
of the model parameters based on the observed data. By using Monte Carlo
simulations to perform the high-dimensional integrations necessary to calculate
marginal and posterior distributions, algorithms such as Metropolis-Hastings
can make the Bayesian inference process tractable. MCMC has been used as
a key component in the model fitting process in many types of social model-
ing and prediction problems. For instance, Cauchemez et al. use a Bayesian
MCMC approach to examine the main characteristics that affect influenza dis-
ease transmission between households [1]. Similarly, the effect of spatial influ-
ences on geopolitical conflicts has been modeled using an MCMC formulation
in which the likelihood of war involvement for each nation is conditioned on the
decisions of proximate states [2].



Although the MCMC methodology has many advantages, many of the com-
monly used MCMC algorithms are strongly dependent upon good initialization
of the proposal distribution. In cases where the proposal distribution is far from
the desired posterior distribution the algorithm may converge to a poor local
minimum or require a long time to achieve convergence. In this paper, we fo-
cus on the question of how to select a good proposal distribution for MCMC
algorithms. To address this problem, we turn to another modeling technique,
agent-based modeling (ABM), to generate simulated data which is then used to
initialize the proposal distribution of the MCMC. The combination of the two
models, agent-based and MCMC, produces a more accurate result than either of
the parent models and facilitates the MCMC convergence. To demonstrate the
strengths of this approach, we present a case study on modeling and predicting
transportation patterns and parking lot usage on a large university campus.

2 Related Work

Markov Chain Monte Carlo describes a family of methods for performing Bayesian
inference through stochastic simulations of a Markov process. In the domain of
social modeling and prediction, MCMC is well suited for studying the effect of
long-term influences on dynamic systems of social agents. For instance, SIENA
(Simulation Investigation for Empirical Network Analysis) uses MCMC for an-
alyzing longitudinal data of networks and behavior [3]. SIENA is a powerful
toolkit that can be used to test hypotheses about the effects of actor and tie
covariates on network structure and actor behavior [4]. However, for large and
complicated datasets, it can be challenging to get the MCMC component of
SIENA to converge in a reasonable period of time. Since our proposed method
initializes the proposal distribution at a point closer to the target distribution,
it improves the convergence rate of MCMC.

MCMC is an alternative to two other commonly used approximation meth-
ods: 1) importance sampling—samples are drawn from a distribution other than
the target one, then reweighted to account for differences between the two distri-
butions, and 2) variational inference—the original integration problem is trans-
formed into an optimization problem [5]. Effectively MCMC allows us to draw
samples from a distribution π(x) without having to know its normalization.
With these samples, it is possible to compute any quantity of interest about the
distribution of x, such as means, confidence regions, or covariance [6]. In this
paper, MCMC is used as a simulation technique, and the sample set used to
characterize the posterior distribution is simply compared against the output of
other simulation techniques such as agent-based modeling, rather than used to
perform Bayesian inference over model parameters.

This paper focuses on improving the performance of the Metropolis-Hastings
algorithm (MH) [7] which is relatively sensitive to the initial proposal distribu-
tion. It is because of this sensitivity that researchers sometimes opt to use alter-
native MCMC algorithms, such as Gibbs sampling [8]. Our proposed method is
a variation on the idea of using suboptimal inference and learning algorithms to



generate data-driven proposal distributions for the MH algorithm [9]. Eaton et
al. [10] used dynamic programming to create a proposal distribution for MCMC
in the space of directed acyclic graphs. They showed that this hybrid technique
converges to the posterior faster than other methods, resulting in more accurate
structure learning of graphical models and higher predictive likelihoods on test
data.

In [11], de Freitas et al. introduce two different methods to overcome the
problem of finding a good proposal distribution. In the first approach, a mix-
ture of two kernels is used to drive the search process: 1) a variational kernel to
broadly explore the problem domain and locate regions of high-probability and 2)
a Metropolis kernel to explore the local regions. One drawback with this method
is that finding a good variational kernel can be difficult to do. To combat this is-
sue, the authors propose a second technique called adaptive MCMC in which the
proposal distribution is updated at run-time based on the behavior of Markov
chain. Adaptive methods generally seek to construct a better proposal distribu-
tion through the combination of stochastic approximation and MCMC [12]. One
issue with this class of adaptive techniques is that they often rely on certain
mathematical assumptions being valid, and thus can only be used in a limited
set of conditions unlike our proposed approach. Reversible jump MCMC is a
different form of run-time modification in which the dimensionality of proposal
distribution is changed; this technique can be used even in cases that the number
of parameters is not known [13]. Brooks et al. introduced a new methodology
for constructing efficient reversible jump MCMC proposal distributions [14].

Agent-based modeling can be an effective way of modeling complex systems
that are not easy to characterize analytically. Typically, each agent in the sim-
ulation operates according to a set of simple rules representing the decision-
making process of a human, or a group of humans. Simulating the social system
reveals emergent interactions between the agents, which are often not immedi-
ately obvious from the rules of the system. For a more comprehensive overview of
agent-based modeling approaches and applications, the reader is referred to [15].
Although agent-based systems are a powerful simulation and modeling tool in
the hands of a domain expert, it is generally difficult to reproduce or verify con-
clusions drawn from more complicated ABMs since it rarely possible to exhaus-
tively describe all the interactions which occur within the ABM or to quantify
the impact of software modifications to the simulation. In this paper, since the
ABM is used exclusively to shape the proposal distribution, it is easy to quantify
the contribution of the ABM and reproduce the results.

3 Method

Figure 1 provides an overview of our proposed hybrid modeling technique in
which an agent-based model is used to generate the proposal distribution used
by the Markov Chain Monte Carlo algorithm. For this paper, we present a case
study illustrating the usage of our technique as part of modeling effort to under-



stand transportation patterns and parking lot occupancy on the campus of the
University of Central Florida.
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Fig. 1: Overview of proposed method

First, we distributed an online survey to the population of interest on campus-
wide email lists; the results of the survey were then used to initialize an ABM
model with reasonable parameters. The ABM creates 1) a realistic simulated
campus population according to parameters fitted with the survey data 2) sched-
ules for the simulated population members using an activity-based microsimula-
tion 3) paths for the agents to move between their scheduled activities. General
trends of student movement can be viewed using the ABM. To estimate a specific
quantity of interest, such as usage for a specific parking lot at a particular time
and day, the MCMC is used. The Metropolis-Hastings algorithm is initialized
using a proposal distribution based directly on the output of the ABM and run
to convergence.

In this paper, we compare the prediction performance of three different mod-
eling techniques: 1) ABM only 2) an MCMC using a standard proposal distri-
bution combined with observed data based directly on the surveys 3) our hybrid
method in which the classic MCMC sampling is done in two separate phases.
In the first phase, data from the agent-based population is sampled to create a
proposal distribution, and in the second phase the Markov chain is repeatedly
sampled to obtain the target distribution.

3.1 Agent-based Transportation Model

To perform transportation forecasting on the UCF campus, we created an agent-
based model for simulating the common activities (transportation, dining, recre-
ation, and building occupancy) performed by the 47,000 students on the main
campus. 1003 students responded to our online survey posted on KwikSurveys

which was advertised on various campus email lists. The questions on the sur-
vey were grouped into different categories, related to possible places that could
be visited on the main campus, and students were specifically queried about



their visitation frequencies. Based on this data, we created the activity-based
microsimulation described in [16].

Each agent in the model represents an individual student and has a unique set
of parameters that govern his/her activity profile. An agent’s defining parameters
are: entrance, dormitory, department, class building, arrive, depart, lunch, din-
ner, beverage, recreation and wellness, parking, shuttle, and miscellaneous. The
first four parameters designate the single (most common) value of the agents’
entry point to the campus, housing situation, home department, and main class
building. Arrive and depart are lists showing the times the agent enters the cam-
pus and leaves it. The remaining parameters are lists of locations for the agent’s
dining, recreation, and commuting. Additionally, each parameter that includes
a location has another matching parameter that shows the time or frequency of
visiting that location.

Rather than directly mapping the survey data to simulated entities that
match the exact preferences of one of the survey respondents, we attempt to learn
a general model of the population by fitting a set of distributions to the answers
of every question. When the simulation commences, all the agents are initialized
with parameters that remain constant over the lifetime of the agent and are used
to create daily activity profiles. Our simulation is implemented in the Netlogo [17]
environment and is freely available at: http://code.google.com/p/ucf-abm/.

3.2 MCMC

To benchmark the performance of our ABM MCMC model, we created a Markov
Chain Monte Carlo simulation with a standard proposal distribution for making
a limited set of forecasts based on the survey data. We use the Metropolis-
Hastings algorithm as follows:
– Select a proposal distribution Q
– Initialize the starting point, x0
– Do
• Generate a candidate point xc, according to the probability Q(xc|xi)
• Calculate the acceptance probability:

α(xi, xc) = min(1,
π(xc)q(xi|xc)
π(xi)q(xc|xi)

)

• Choose xi+1 = xc with probability α, xi+1 = xi with probability (1−α)
This procedure is executed until the Markov chain has reached its stationary

distribution according to a convergence diagnostic. To validate the simulation,
MH is used to estimate the number of cars entering the parking lots at different
times of a day. One can envision this as a two dimensional diagram with the hor-
izontal axis corresponding to the time of a day, and the vertical one showing the
number of cars entering a specific parking lot. The survey data from the ques-
tions about the attendance pattern and frequency of parking lot usage is used to
initialize observed data used by the MCMC model. Our MCMC model assumes
the unnormalized distribution, π(x), is of the form of a Poisson distribution, and
a standard multivariate Gaussian is used for the proposal distribution.



3.3 ABM MCMC

In our proposed method, the samples produced by the ABM are used to construct
the proposal distribution. Then this distribution is employed by the MCMC
method to find the target distribution. In this case study, the goal of the campus
modeling problem is to build a model describing the transportation patterns of
students, hence the distribution that we are seeking (the target distribution)
should represent the location of students at different times. The samples that
are collected from the agent-based model include x and y coordinates of agents
at each hour. This produces a population of samples containing x, y and time.
The proposal probability of each vector is set equal to the number of times
the vector exists in the dataset divided by the total number of dataset records.
This makes the implicit assumption that the agent-based model has produced
an evenly distributed set of samples from the population domain.

4 Results

One of the main applications of our microsimulation is analyzing pedestrian
movement and car traffic on campus. Figure 2 shows the average visitation fre-
quency for UCF campus locations (junctions, roads, and buildings) as predicted
by the ABM MCMC simulation. The darkness of the circles in Figure 2 is pro-
portional to the number of the students who passed or visited these places.

A question of daily interest for most students is parking lot usage: which lots
have vacancies and where can the best parking spots be found? UCF Parking
Service performed a visual survey of lot usage in Fall 2011 and created a data
set which we compared to our hourly forecasts of student lot usage. Figures 3a
and 3b show the microsimulation forecasts for the different student parking lots
as predicted by: 1) ABM: the agent-based model; 2) MCMC: the Markov
Chain Monte Carlo with standard proposal distribution 3) ABM MCMC: the
proposed hybrid method. The horizontal axis shows the names of the parking
lots and the vertical the difference between the model predictions and the actual
parking lot occupancy tallied by UCF Parking Office. The ABM is much better
at predicting parking lot usage, compared to the MCMC (standard proposal
distribution). However, the hybrid method produces estimations of parking lot
usage that are virtually identical to the actual parking lot survey, with improved
convergence rates.

5 Conclusions

This paper introduces a new hybrid modeling method for combining agent-based
models with MCMC. We demonstrate that the proposed method for initializing
the MCMC proposal distribution with ABM data significantly reduces the pre-
diction error over standard MCMC and also improves upon the ABM alone. We
hypothesize that the combined ABM MCMC finds a more general model of the
the posterior distribution than the ABM alone. Although agent-based models



Fig. 2: Average traffic through different locations on the campus as predicted by
ABM MCMC estimation with darker circles showing more probable locations.
The simulation clearly shows several campus usage trends that are easily verified,
including high student union usage (center) and high traffic at main campus
entrances (bottom left and up left).
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Fig. 3: The absolute value of the prediction error of the MCMC simulation with
standard proposal distribution (MCMC), the agent-based modeling method
(ABM), and our proposed method (ABM MCMC). Shorter bars represent
predictions that diverge less from the actual observed Parking Services data.
Our proposed method accurately forecasts the parking lot usage across all the
parking lots (A-I) at noon (3a) and 4 pm (3b).

are often difficult to formally specify and reproduce exactly, the contribution of
the ABM can be entirely quantified by the single proposal distribution, which
makes it possible to reproduce the results without replicating the entire ABM.
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