Skip to main content

Improving Markov Chain Monte Carlo Estimation with Agent-Based Models

  • Conference paper
Social Computing, Behavioral-Cultural Modeling and Prediction (SBP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7812))

  • 5956 Accesses

Abstract

The Markov Chain Monte Carlo (MCMC) family of methods form a valuable part of the toolbox of social modeling and prediction techniques, enabling modelers to generate samples and summary statistics of a population of interest with minimal information. It has been used successfully to model changes over time in many types of social systems, including patterns of disease spread, adolescent smoking, and geopolitical conflicts. In MCMC an initial proposal distribution is iteratively refined until it approximates the posterior distribution. However, the selection of the proposal distribution can have a significant impact on model convergence. In this paper, we propose a new hybrid modeling technique in which an agent-based model is used to initialize the proposal distribution of the MCMC simulation. We demonstrate the use of our modeling technique in an urban transportation prediction scenario and show that the hybrid combined model produces more accurate predictions than either of the parent models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cauchemez, S., Carrat, F., Viboud, C., Valleron, A.J., Boëlle, P.Y.: A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data. Statistics in Medicine 23(22), 3469–3487 (2004)

    Article  Google Scholar 

  2. Ward, M.D., Gleditsch, K.S.: Location, location, location: An MCMC approach to modeling the spatial context of war and peace. Political Analysis 10(3), 244–260 (2002)

    Article  Google Scholar 

  3. Snijders, T.: Markov Chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure 3 (2002)

    Google Scholar 

  4. Snijders, T.: Models and methods in social network analysis. Cambridge University Press, New York (2005)

    Google Scholar 

  5. Carbonetto, P., King, M., Hamze, F.: A stochastic approximation method for inference in probabilistic graphical models. In: NIPS, vol. 22, pp. 216–224 (2009)

    Google Scholar 

  6. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press (2007)

    Google Scholar 

  7. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1093 (1953)

    Article  Google Scholar 

  8. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence (6), 721–741 (1984)

    Google Scholar 

  9. Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.: An introduction to MCMC for machine learning. Machine Learning 50(1), 5–43 (2003)

    Article  MATH  Google Scholar 

  10. Eaton, D., Murphy, K.: Bayesian structure learning using dynamic programming and MCMC. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 101–108 (2007)

    Google Scholar 

  11. De Freitas, N., Højen-Sørensen, P., Jordan, M., Russell, S.: Variational MCMC. In: UAI, pp. 120–127 (2001)

    Google Scholar 

  12. Andrieu, C., Moulines, É.: On the ergodicity properties of some adaptive MCMC algorithms. The Annals of Applied Probability 16(3), 1462–1505 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yeh, Y., Yang, L., Watson, M., Goodman, N., Hanrahan, P.: Synthesizing open worlds with constraints using locally annealed reversible jump MCMC. ACM Transactions on Graphics (TOG) 31(4), 56:1–56:11 (2012)

    Article  Google Scholar 

  14. Brooks, S., Giudici, P., Roberts, G.: Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65(1), 3–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Macal, C., North, M.: Tutorial on agent-based modelling and simulation. Journal of Simulation 4(3), 151–162 (2010)

    Article  Google Scholar 

  16. Beheshti, R., Sukthankar, G.: Extracting agent-based models of human transportation patterns. In: Proceedings of the ASE/IEEE International Conference on Social Informatics, Washington, D.C., pp. 157–164 (December 2012)

    Google Scholar 

  17. Wilensky, U.: NetLogo. Evanston, IL: Center for Connected Learning and Computer-Based Modeling, Northwestern University (1999), http://ccl.northwestern.edu/netlogo/ (retrieved)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beheshti, R., Sukthankar, G. (2013). Improving Markov Chain Monte Carlo Estimation with Agent-Based Models. In: Greenberg, A.M., Kennedy, W.G., Bos, N.D. (eds) Social Computing, Behavioral-Cultural Modeling and Prediction. SBP 2013. Lecture Notes in Computer Science, vol 7812. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37210-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37210-0_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37209-4

  • Online ISBN: 978-3-642-37210-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics