Abstract
We discuss the implementation and results of an evolutionary algorithm designed to generate oscillating biological networks. In our algorithm we have used a type of fitness function which defines oscillations independent of amplitude and period, which improves results significantly when compared to a simple fitness function which only measures the distance to a predefined target function. We show that with our fitness function, we are able to conduct an analysis of minimal oscillating motifs. We find that there are several different examples of mechanisms that generate oscillations, which make use in various ways of transcriptional regulations, complex formation and catalytic degradation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
François, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. Proc. Nat. Acad. Sci. USA 101(2), 580–585 (2004)
Chu, D.: Evolving genetic regulatory networks for systems biology. In: Proc. IEEE Congress Evolutionary Computation, CEC 2007, pp. 875–882 (2007)
Sakamoto, E., Iba, H.: Inferring a system of differential equations for a gene regulatory network by using genetic programming. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 720–726 (2001)
Floares, A.: Automatic inferring drug gene regulatory networks with missing information using neural networks and genetic programming. In: IEEE International Joint Conference on Neural Networks, pp. 3078–3085 (2008)
Tagkopoulos, I., Liu, Y., Tavazoie, S.: Predictive behavior within microbial genetic networks. Science 320(5881), 1313 (2008)
Šter, B., Avbelj, M., Jerala, R., Dobnikar, A.: On the Origin and Features of an Evolved Boolean Model for Subcellular Signal Transduction Systems. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 383–392. Springer, Heidelberg (2011)
O’Neill, J.S., van Ooijen, G., Dixon, L.E., Troein, C., Corellou, F., Bouget, F.Y., Reddy, A.B., Millar, A.J.: Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554–558 (2011)
Paladugu, S.R., Chickarmane, V., Deckard, A., Frumkin, J.P., McCormack, M., Sauro, H.M.: In silico evolution of functional modules in biochemical networks. IEE Proceedings Systems Biology 153(4), 223–235 (2006)
Jin, Y., Meng, Y., Sendhoff, B.: Influence of regulation logic on the easiness of evolving sustained oscillation for gene regulatory networks. In: Proc. IEEE Symp. Artificial Life ALife 2009, pp. 61–68 (2009)
François, P., Hakim, V.: Core genetic module: the mixed feedback loop. Phys. Rev. E 72, 031908 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Dorp, M., Lannoo, B., Carlon, E. (2013). Evolutionary Generation of Small Oscillating Genetic Networks. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-37213-1_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37212-4
Online ISBN: 978-3-642-37213-1
eBook Packages: Computer ScienceComputer Science (R0)