Skip to main content

Effective Rule-Based Multi-label Classification with Learning Classifier Systems

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7824))

Included in the following conference series:

Abstract

In recent years, multi-label classification has attracted a significant body of research, motivated by real-life applications such as text classification and medical diagnoses. However, rule-based methods, and especially Learning Classifier Systems (LCS), for tackling such problems have only been sparsely studied. This is the motivation behind our current work that introduces a generalized multi-label rule format and uses it as a guide for further adapting the general Michigan-style LCS framework. The resulting LCS algorithm is thoroughly evaluated and found competitive to other state-of-the-art multi-label classification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aha, D., Kibler, D., Albert, M.: Instance-based learning algorithms. Machine Learning 6(1), 37–66 (1991)

    Google Scholar 

  2. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)

    Google Scholar 

  3. Zhang, G.: Neural networks for classification: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C 30(4), 451–462 (2000)

    Article  Google Scholar 

  4. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer (2010)

    Google Scholar 

  5. Holland, J.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology, vol. 4, pp. 263–293. Academic Press, New York (1976)

    Google Scholar 

  6. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  7. Bernadó-Mansilla, E., Garrell-Guiu, J.: Accuracy-based learning classifier systems: models, analysis and applications to classification tasks. Evolutionary Computation 11(3), 209–238 (2003)

    Article  Google Scholar 

  8. Orriols-Puig, A., Bernadó-Mansilla, E.: Revisiting UCS: Description, Fitness Sharing, and Comparison with XCS. In: Bacardit, J., Bernadó-Mansilla, E., Butz, M.V., Kovacs, T., Llorà, X., Takadama, K. (eds.) IWLCS 2006 and IWLCS 2007. LNCS (LNAI), vol. 4998, pp. 96–116. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Tzima, F.A., Mitkas, P.A.: Strength-based learning classifier systems revisited: Effective rule evolution in supervised classification tasks. Engineering Applications of Artificial Intelligence 26(2), 818–832 (2013)

    Article  Google Scholar 

  10. Bull, L., Bernadó-Mansilla, E., Holmes, J.H. (eds.): Learning Classifier Systems in Data Mining. SCI, vol. 125. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  11. Vallim, R., Duque, T., Goldberg, D., Carvalho, A.: The multi-label OCS with a genetic algorithm for rule discovery: implementation and first results. In: Proceedings of GECCO 2009, pp. 1323–1330. ACM, New York (2009)

    Google Scholar 

  12. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 254–269. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Random k-labelsets for multilabel classification. IEEE Transactions on Knowledge and Data Engineering 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  14. Zhang, M., Zhou, Z.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  15. Schapire, R., Singer, Y.: Boostexter: A boosting- based system for text categorization. Machine learning 39(2), 135–168 (2000)

    Article  MATH  Google Scholar 

  16. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Machine Learning 73(2), 185–214 (2008)

    Article  Google Scholar 

  17. Read, J.: Scalable Multi-Label Classification. PhD thesis, University of Waikato, Hamilton, New Zealand (2010)

    Google Scholar 

  18. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allamanis, M., Tzima, F.A., Mitkas, P.A. (2013). Effective Rule-Based Multi-label Classification with Learning Classifier Systems. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37213-1_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37212-4

  • Online ISBN: 978-3-642-37213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics