Abstract
We propose an asymmetric version of the Self-Organizing Map (SOM) capable to properly visualize datasets consisting of time series. The goal is achieved by introducing an asymmetric coefficient making the asymmetric SOM capable to handle time series. The experiments on the U.S. Stock Market Dataset verify and confirm the effectiveness of the proposed asymmetric SOM extension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2001)
Martín-Merino, M., Muñoz, A.: Visualizing Asymmetric Proximities with SOM and MDS Models. Neurocomputing 63, 171–192 (2005)
Olszewski, D.: An Experimental Study on Asymmetric Self-Organizing Map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 42–49. Springer, Heidelberg (2011)
Lee, Y.H., Wei, C.P., Cheng, T.H., Yang, C.T.: Nearest-Neighbor-Based Approach to Time-Series Classification. Decision Support Systems 53(1), 207–217 (2012)
D’Urso, P., Maharaj, E.A.: Wavelets-Based Clustering of Multivariate Time Series. Fuzzy Sets and Systems 193, 33–61 (2012)
Heskes, T.: Self-Organizing Maps, Vector Quantization, and Mixture Modeling. IEEE Transactions on Neural Networks 12(6), 1299–1305 (2001)
Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)
Tversky, A.: Preference, Belief, and Similarity (Selected Writings). A Bradford Book, The MIT Press, Cambridge, Massachusetts (2004)
Olszewski, D.: Asymmetric k-Means Algorithm. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 1–10. Springer, Heidelberg (2011)
Olszewski, D.: k-Means Clustering of Asymmetric Data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part III. LNCS, vol. 7208, pp. 243–254. Springer, Heidelberg (2012)
Muñoz, A., Martin, I., Moguerza, J.M.: Support Vector Machine Classifiers for Asymmetric Proximities. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 217–224. Springer, Heidelberg (2003)
Muñoz, A., Martín-Merino, M.: New Asymmetric Iterative Scaling Models for the Generation of Textual Word Maps. In: Proceedings of the International Conference on Textual Data Statistical Analysis, JADT 2002, pp. 593–603 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Olszewski, D., Kacprzyk, J., Zadrożny, S. (2013). Time Series Visualization Using Asymmetric Self-Organizing Map. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-37213-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37212-4
Online ISBN: 978-3-642-37213-1
eBook Packages: Computer ScienceComputer Science (R0)