Skip to main content

Contextual Pooling in Image Classification

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

  • 8703 Accesses

Abstract

The original bag-of-words (BoW) model in terms of image classification treats each local feature independently, and thus ignores the spatial relationships between a feature and its neighboring features, namely, the feature’s context. However, our intuition and empirical studies tell the importance of such spatial information. Although the global spatial information can be captured with the spatial pyramid matching scheme, the subject of capturing local spatial relationships between features is still open. In this paper, we propose a new method to embed such local spatial (context) information into the BoW model. A vector reflecting context information is firstly extracted along with each feature, context patterns are then code-specifically trained, and thus the context information is elegantly embedded into the BoW model by contextual pooling according to different context patterns. Extensive experiments on the PASCAL VOC 2007 dataset show that our method greatly enhances the BoW model, and achieves the state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV (2004)

    Google Scholar 

  2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2(60), 91–110 (2004)

    Article  Google Scholar 

  3. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results (2007)

    Google Scholar 

  4. van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1271–1283 (2010)

    Article  Google Scholar 

  5. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T.S., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR (2010)

    Google Scholar 

  6. Huang, Y., Huang, K., Yu, Y., Tan, T.: Salient coding for image classification. In: CVPR (2011)

    Google Scholar 

  7. Wu, Z., Huang, Y., Wang, L., Tan, T.: Group encoding of local features in image classification. In: ICPR (2012)

    Google Scholar 

  8. Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for Large-Scale Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image Classification Using Super-Vector Coding of Local Image Descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: CVPR (2006)

    Google Scholar 

  11. Wang, X., Bai, X., Liu, W., Latecki, L.J.: Feature context for image classification and object detection. In: CVPR (2011)

    Google Scholar 

  12. Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S.: Objects in context. In: ICCV (2007)

    Google Scholar 

  13. Galleguillos, C., Rabinovich, A., Belongie, S.: Object categorization using co-occurrence, location and appearance. In: CVPR (2008)

    Google Scholar 

  14. Myeong, H., Chang, J., Lee, K.: Learning object relationships via graph-based context model. In: CVPR (2012)

    Google Scholar 

  15. Morioka, N., Satoh, S.: Compact correlation coding for visual object categorization. In: ICCV (2011)

    Google Scholar 

  16. Zhang, S., Huang, Q., Hua, G., Jiang, S., Gao, W., Tian, Q.: Building contextual visual vocabulary for large-scale image applications. In: ACM Multimedia (2010)

    Google Scholar 

  17. Ito, S., Kubota, S.: Object Classification Using Heterogeneous Co-occurrence Features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 209–222. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Su, Y., Jurie, F.: Visual word disambiguation by semantic contexts. In: ICCV (2011)

    Google Scholar 

  19. Boureau, Y., Roux, N.L., Bach, F., Ponce, J., Yann, L.: Ask the locals: multi-way local pooling for image recognition. In: ICCV (2011)

    Google Scholar 

  20. Chang, C., Lin, C.: Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(27), 1–27 (2011)

    Article  Google Scholar 

  21. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Z., Huang, Y., Wang, L., Tan, T. (2013). Contextual Pooling in Image Classification. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics