Abstract
The paper presents the Tensor-based Reflective Relational Learning System (TRRLS) as a tensor-based approach to automatic recommendation of matches between nodes of semantic structures. The system may be seen as realizing a probabilistic inference with regard to the relation representing the ‘semantic equivalence’ of ontology classes. Despite the fact that TRRLS is based on the new idea of algebraic modeling of multi-relational data, it provides results that are comparable to those achieved by the leading solutions of the Ontology Alignment Evaluation Initiative (OAEI) contest realizing the task of matching concepts of Anatomy track ontologies on the basis of partially known expert matches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ciesielczyk, M., Szwabe, A.: RI-based Dimensionality Reduction for Recommender Systems. In: Proc. of 3rd International Conference on Machine Learning and Computing. IEEE Press, Singapore (2011)
Cohen, T., Schaneveldt, R., Widdows, D.: Reflective Random Indexing and Indirect Inference: A Scalable Method for Discovery of Implicit Connections. Journal of Biomedical Informatics 43(2), 240–256 (2010)
De Raedt, L.: Logical and Relational Learning. Springer (2008)
Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., Tadepalli, P.: Structured Machine Learning: the Next Ten Years. Machine Learning 73(1), 3–23 (2008)
Euzenat, J., Ferrara, A., Meilicke, C., Nikolov, A., Pane, J., Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Svb-Zamazal, O., Svtek, V., Trojahn dos Santos, C.: Results of the Ontology Alignment Evaluation Initiative 2010. In: Proc. of 5th ISWC Workshop on Ontology Matching (OM), Shanghai, pp. 85–117 (2010)
Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking Semantic Web Data by Tensor Decomposition. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 213–228. Springer, Heidelberg (2009)
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. The MIT Press (2007)
Kolda, T.G., Bader, B.W.: Tensor Decompositions and Applications. SIAM Review 51(3), 455–500 (2009)
Lavrenko, V.: A Generative Theory of Relevance. Springer, Berlin (2010)
Nickel, M., Tresp, V., Kriegel, H.-P.: A Three-Way Model for Collective Learning on Multi-Relational Data. In: Proceedings of the 28th International Conference on Machine Learning (2011)
Singh, A.P., Gordon, G.J.: Relational Learning via Collective Matrix Factorization. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 650–658 (2008)
Struyf, J., Blockeel, H.: Relational Learning. In: Sammut, C., Webb, G. (eds.) Encyclopedia of Machine Learning, pp. 851–857. Springer (2010)
Sutskever, I., Salakhutdinov, R., Tenenbaum, J.B.: Modelling Relational Data Using Bayesian Clustered Tensor Factorization. Advances in Neural Information Processing Systems 22 (2009)
Szwabe, A., Ciesielczyk, M., Misiorek, P.: Long-tail Recommendation Based on Reflective Indexing. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS, vol. 7106, pp. 142–151. Springer, Heidelberg (2011)
van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, New York (2004)
Ontology Alignment Evaluation Initiative. 2011 Campaign (2011), http://oaei.ontologymatching.org/2011/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szwabe, A., Misiorek, P., Walkowiak, P. (2013). Multi-Relational Learning for Recommendation of Matches between Semantic Structures. In: Graña, M., Toro, C., Howlett, R.J., Jain, L.C. (eds) Knowledge Engineering, Machine Learning and Lattice Computing with Applications. KES 2012. Lecture Notes in Computer Science(), vol 7828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37343-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-37343-5_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37342-8
Online ISBN: 978-3-642-37343-5
eBook Packages: Computer ScienceComputer Science (R0)