Skip to main content

Fuzzy Visual Navigation Using Behavior Primitives for Small Humanoid Robot

  • Chapter
Robot Intelligence Technology and Applications 2012

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 208))

Abstract

In this paper, we present a fuzzy visual navigation method that uses behavior primitives for humanoid robots. We define behavior primitives that consist of locomotion and motion primitives. The fuzzy navigation system consists of four control algorithms: autonomous walking, target tracking, obstacle avoidance, and behavior control based on marker recognition. We verify the proposed method through navigation experiments by using a developed small humanoid robot. The experimental results demonstrate that the humanoid robot can navigate efficiently and stably to the target and show improved performance of behavior planning for humanoid navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, Y.-T., Noh, S.-H.: Behavior Planning for Humanoid Robot Using Behavior Primitive. Journal of Fuzzy Logic and Intelligent Systems 19(1), 108–114 (2009)

    MATH  Google Scholar 

  2. Hauser, K., Bretl, T., Latombe, J.-C.: Using Motion Primitives in Probabilistic Sample-Based Planning for Humanoid Robots. In: Proceedings of the Workshop on the Algorithmic Foundations of Robotics, WAFR (2006)

    Google Scholar 

  3. Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)

    Google Scholar 

  4. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The Development of Honda humanoid robot. In: Int. Conf. on Robotics and Automation, pp. 1321–1326 (May 1998)

    Google Scholar 

  5. Okada, K., Kagami, S., Inaba, M., Inoue, H.: Plane segment finder: Algorithm, implementation, and applications. In: Int. Conf. on Robotics and Automation, Korea (2001)

    Google Scholar 

  6. Lau, M., Kuffner, J.J.: Behavior Planning for Character Animation. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)

    Google Scholar 

  7. Kanehiro, F., Yoshimi, T., Kajita, S., Morisawa, M., Fujiwara, K., Harada, K., Kaneko, K., Hirukawa, H., Tomita, F.: Whole body locomotion planning of humanoid robots based on a 3D grid map. In: Int. Conf. on Robotics and Automation, Spain (2005)

    Google Scholar 

  8. Gutmann, J.-S., Fukuchi, M., Fujita, M.: Real-time path planning for humanoid robot navigation. In: Int. Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland (2005)

    Google Scholar 

  9. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston (2005)

    MATH  Google Scholar 

  10. Chestnutt, J., Kuffner, J.J.: A tiered planning strategy for biped navigation. In: Int. Conf. on Humanoid Robotics, Humanoids (2004)

    Google Scholar 

  11. Gutmann, J.-S., Fukuchi, M., Fujita, M.: Stair climbing for humanoid robots using stereo vision. In: Int. Conf. on Intelligent Robots and Systems (IROS), Sendai, Japan (2004)

    Google Scholar 

  12. Chestnutt, J., Kuffner, J.J., Nishiwaki, K., Kagami, S.: Planning biped navigation strategies in complex environments. In: Int. Conf. on Humanoid Robotics, Humanoids (2003)

    Google Scholar 

  13. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: Int. Conf. on Robotics and Automation (ICRA), pp. 1321–1326 (May 1998)

    Google Scholar 

  14. Kim, Y.T., Noh, S.H., Lee, H.J.: Walking and Stabilization Algorithm of Biped Robot on the Uneven Ground. Journal of Fuzzy Logic and Intelligent Systems 15(1), 907–913 (2005)

    MathSciNet  Google Scholar 

  15. Kroki, Y., Fujita, M., Ishida, T., Nagasaka, K., Yamaguchi, J.: A small biped entertainment robot exploring attractive applications. In: Int. Conf. on Robotics and Automation, ICRA (2003)

    Google Scholar 

  16. Lau, M., Kuffner, J.J.: Behavior Planning for Character Animation. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)

    Google Scholar 

  17. Noh, S., Kim, Y.T.: Stable Behavior Trajectory Generation for Humanoid Robot using Locomotion and Motion Primitives. International Journal of Assistive Robotics and Systems 11(2), 31–40 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tae Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, YT., Noh, SH. (2013). Fuzzy Visual Navigation Using Behavior Primitives for Small Humanoid Robot. In: Kim, JH., Matson, E., Myung, H., Xu, P. (eds) Robot Intelligence Technology and Applications 2012. Advances in Intelligent Systems and Computing, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37374-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37374-9_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37373-2

  • Online ISBN: 978-3-642-37374-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics