Skip to main content

Discovering Evolution Chains in Dynamic Networks

  • Conference paper
New Frontiers in Mining Complex Patterns (NFMCP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7765))

Included in the following conference series:

Abstract

Most of the works on learning from networked data assume that the network is static. In this paper we consider a different scenario, where the network is dynamic, i.e. nodes/relationships can be added or removed and relationships can change in their type over time. We assume that the “core” of the network is more stable than the “marginal” part of the network, nevertheless it can change with time. These changes are of interest for this work, since they reflect a crucial step in the network evolution. Indeed, we tackle the problem of discovering evolution chains, which express the temporal evolution of the “core” of the network. To describe the “core” of the network, we follow a frequent pattern-mining approach, with the critical difference that the frequency of a pattern is computed along a time-period and not on a static dataset. The proposed method proceeds in two steps: 1) identification of changes through the discovery of emerging patterns; 2) composition of evolution chains by joining emerging patterns. We test the effectiveness of the method on both real and synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Morgan Kaufmann (1994)

    Google Scholar 

  2. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining graph evolution rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Ceci, M., Appice, A., Loglisci, C., Caruso, C., Fumarola, F., Malerba, D.: Novelty detection from evolving complex data streams with time windows. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 563–572. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Ceci, M., Appice, A., Malerba, D.: Discovering emerging patterns in spatial databases: A multi-relational approach. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 390–397. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Di Mauro, N., Malerba, D.: Mining networked data. In: Chawla, N., King, I., Sperduti, A. (eds.) Symposium on Computational Intelligence and Data Mining, IEEE-CIDM 2011, p. xx. IEEE (2011)

    Google Scholar 

  6. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and differences. In: KDD, pp. 43–52 (1999)

    Google Scholar 

  7. Malerba, D.: A relational perspective on spatial data mining. IJDMMM 1(1), 103–118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2007, pp. 687–696. ACM, New York (2007)

    Chapter  Google Scholar 

  9. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1), 69–101 (1996)

    Google Scholar 

  10. Zhu, J., Xie, Q., Chin, E.J.: A hybrid time-series link prediction framework for large social network. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp. 345–359. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Loglisci, C., Ceci, M., Malerba, D. (2013). Discovering Evolution Chains in Dynamic Networks. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2012. Lecture Notes in Computer Science(), vol 7765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37382-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37382-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37381-7

  • Online ISBN: 978-3-642-37382-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics