Skip to main content

Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses

  • Conference paper
New Frontiers in Mining Complex Patterns (NFMCP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7765))

Included in the following conference series:

Abstract

Feature selection methods often improve the performance of attribute-value learning. We explore whether also in relational learning, examples in the form of clauses can be reduced in size to speed up learning without affecting the learned hypothesis. To this end, we introduce the notion of safe reduction: a safely reduced example cannot be distinguished from the original example under the given hypothesis language bias. Next, we consider the particular, rather permissive bias of bounded treewidth clauses. We show that under this hypothesis bias, examples of arbitrary treewidth can be reduced efficiently. The bounded treewidth bias can be replaced by other assumptions such as acyclicity with similar benefits. We evaluate our approach on four data sets with the popular system Aleph and the state-of-the-art relational learner nFOIL. On all four data sets we make learning faster for nFOIL, achieving an order-of-magnitude speed up on one of the data sets, and more accurate for Aleph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature selection: An ever evolving frontier in data mining. Journal of Machine Learning Research - Proceedings Track 10, 4–13 (2010)

    Google Scholar 

  2. Lavrac, N., Gamberger, D., Jovanoski, V.: A study of relevance for learning in deductive databases. J. Log. Program. 40(2-3), 215–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Appice, A., Ceci, M., Rawles, S., Flach, P.A.: Redundant feature elimination for multi-class problems. In: ICML, vol. 69 (2004)

    Google Scholar 

  4. Raedt, L.D.: Logical and Relational Learning: From ILP to MRDM (Cognitive Technologies). Springer-Verlag New York, Inc. (2008)

    Google Scholar 

  5. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163 (1970)

    MathSciNet  Google Scholar 

  6. Kuželka, O., Železný, F.: Seeing the world through homomorphism: An experimental study on reducibility of examples. In: Frasconi, P., Lisi, F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 138–145. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Nassif, H., Al-Ali, H., Khuri, S., Keirouz, W., Page, D.: An inductive logic programming approach to validate hexose binding biochemical knowledge. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 149–165. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Erickson, J.: CS 598: Computational Topology, course notes, University of Illinois at Urbana-Champaign (2009)

    Google Scholar 

  9. Kuželka, O., Železný, F.: Block-wise construction of acyclic relational features with monotone irreducibility and relevancy properties. In: ICML 2009: the 26th Int. Conf. on Machine Learning (2009)

    Google Scholar 

  10. Kuželka, O., Železný, F.: Block-wise construction of tree-like relational features with monotone reducibility and redundancy. Machine Learning 83, 163–192 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krogel, M.-A., Rawles, S., Železný, F., Flach, P.A., Lavrač, N., Wrobel, S.: Comparative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)

    Google Scholar 

  13. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction algorithms. Machine Learning 55(2), 137–174 (2004)

    Article  MATH  Google Scholar 

  15. Atserias, A., Bulatov, A., Dalmau, V.: On the power of k-consistency. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  17. De Raedt, L.: Logical settings for concept-learning. Artif. Intell. 95(1), 187–201 (1997)

    Article  MATH  Google Scholar 

  18. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. Journal of Computer and System Sciences 64(3), 579–627 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Landwehr, N., Kersting, K., Raedt, L.D.: Integrating naïve bayes and FOIL. Journal of Machine Learning Research 8, 481–507 (2007)

    MATH  Google Scholar 

  20. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000-2001. Bioinformatics 17(1), 107–108 (2001)

    Article  Google Scholar 

  22. Žáková, M., Železný, F., Garcia-Sedano, J.A., Masia Tissot, C., Lavrač, N., Křemen, P., Molina, J.: Relational data mining applied to virtual engineering of product designs. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 439–453. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuželka, O., Szabóová, A., Železný, F. (2013). Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E., Ras, Z.W. (eds) New Frontiers in Mining Complex Patterns. NFMCP 2012. Lecture Notes in Computer Science(), vol 7765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37382-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37382-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37381-7

  • Online ISBN: 978-3-642-37382-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics