Skip to main content

A MapReduce-Based Method for Learning Bayesian Network from Massive Data

  • Conference paper
Web Technologies and Applications (APWeb 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7808))

Included in the following conference series:

Abstract

Bayesian network (BN) is the popular and important probabilistic graphical model for representing and inferring uncertain knowledge. Learning BN from massive data is the basis for uncertain-knowledge-centered inferences, prediction and decision. The inherence of massive data makes BN learning be adjusted to the large data volume and executed in parallel. In this paper, we proposed a MapReduce-based approach for learning BN from massive data by extending the traditional scoring & search algorithm. First, in the scoring process, we developed map and reduce algorithms for obtaining the required parameters in parallel. Second, in the search process, for each node we developed map and reduce algorithms for scoring all the candidate local structures in parallel and selecting the local optimal structure with the highest score. Thus, the local optimal structures of each node are merged to the global optimal one. Experimental result indicates our proposed method is effective and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kouzes, R., Anderson, G., Elbert, S., Gorton, L., Gracio, D.: The changing paradigm of data–intensive computing. IEEE Computer 42(1), 26–34 (2009)

    Article  Google Scholar 

  2. Agrawal, D., El Abbadi, A., Antony, S., Das, S.: Data Management Challenges in Cloud Computing Infrastructures. In: Kikuchi, S., Sachdeva, S., Bhalla, S. (eds.) DNIS 2010. LNCS, vol. 5999, pp. 1–10. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: A flexible and extensible foundation for data–intensive computing. In: Abiteboul, S., Böhm, K., Koch, C., Tan, K. (eds.) Proc. of ICDE 2011, pp. 1151–1162. IEEE Computer Society, Hannover (2011)

    Google Scholar 

  4. Deshpande, A., Sarawagi, S.: Probabilistic graphical models and their role in database. In: Koch, C., Gehrke, J., Garofalakis, M.N., et al. (eds.) VLDB 2007, pp. 1435–1436. ACM (2007)

    Google Scholar 

  5. Pearl, J.: Probabilistic reasoning in intelligent systems: network of plausible inference. Morgan Kaufmann, San Mates (1988)

    Google Scholar 

  6. Russel, S., Norvig, P.: Artificial intelligence-A modern approach. Pearson Education, Prentice Hall (2002)

    Google Scholar 

  7. Song, W., Yu, J.X., Cheng, H., Liu, H., He, J., Du, X.: Bayesian Network Structure Learning from Attribute Uncertain Data. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418, pp. 314–321. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning. Machine Learning 9(4), 309–347 (1992)

    MATH  Google Scholar 

  9. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistic data. Machine Learning 20(3), 197–243 (1995)

    MATH  Google Scholar 

  10. Tsamardinos, I., Brown, L., Aliferis, C.: The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65(1), 31–78 (2006)

    Article  Google Scholar 

  11. Suzuki, J.: Learning Bayesian belief networks based on the MDL principle: An efficient algorithm using the branch and bound technique. IEICE Trans. Information and Systems E82-D(2), 356–367 (1999)

    Google Scholar 

  12. Xiang, Y., Chu, T.: Parallel learning of belief networks in large and difficult domains. Data Mining Knowledge Discovery 3(3), 315–338 (1999)

    Article  Google Scholar 

  13. Yu, K., Wang, H., Wu, X.: A parallel algorithm for learning Bayesian networks. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 1055–1063. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Yoshinori, T., Seiya, I., Satoru, M.: Parallel Algorithm for Learning Optimal Bayesian Network Structure. Journal of Machine Learning Research 12, 2437–2459 (2011)

    Google Scholar 

  15. Zhang, Q., Wang, S., Qin, B.: Cleaning Uncertain Streams by Parallelized Probabilistic Graphical Models. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 274–279. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Communications of the ACM 53(1), 72–77 (2010)

    Article  Google Scholar 

  17. Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A., Olukotun, K.: Map-Reduce for Machine Learning on Multicore. In: Schölkopf, B., Platt, J.C., Hoffman, T. (eds.) NIPS 2006, pp. 281–288. MIT Press, Vancouver (2006)

    Google Scholar 

  18. Low, L., Bickson, D., Gonzalez, J., Kyrola, A., Guestrin, G., Hellerstein, J.: Distributed GraphLab: a framework for machine learning and data mining in the cloud. PVLDB 5(8), 716–727 (2012)

    Google Scholar 

  19. Chen, W., Zong, L., Huang, W., Ou, G., Wang, Y., Yang, D.: An empirical study of massively parallel Bayesian networks learning for sentiment extraction from unstructured text. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A. (eds.) APWeb 2011. LNCS, vol. 6612, pp. 424–435. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and MapReduce. PVLDB 5(5), 454–465 (2012)

    Google Scholar 

  21. Yuan, P., Sha, C., Wang, X., Yang, B., Zhou, A., Yang, S.: XML Structural Similarity Search Using MapReduce. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 169–181. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc. (2009)

    Google Scholar 

  23. Cheng, J.: PowerConstructor system, http://webdocs.cs.ualberta.ca/~jcheng/bnpc.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fang, Q., Yue, K., Fu, X., Wu, H., Liu, W. (2013). A MapReduce-Based Method for Learning Bayesian Network from Massive Data. In: Ishikawa, Y., Li, J., Wang, W., Zhang, R., Zhang, W. (eds) Web Technologies and Applications. APWeb 2013. Lecture Notes in Computer Science, vol 7808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37401-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37401-2_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37400-5

  • Online ISBN: 978-3-642-37401-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics