Skip to main content

Camera Calibration Using Vertical Lines

  • Conference paper
Computer Vision - ACCV 2012 Workshops (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7728))

Included in the following conference series:

  • 2452 Accesses

Abstract

In this paper we present an easy method for multiple camera calibration with common field of view only from vertical lines. The locations of the vertical lines are known in advance. Compared to other calibration objects, the vertical lines have some good properties, since they can be easily built and can be visible by cameras in any direction simultaneously. Given 5 fixed vertical lines, an image containing them taken by a camera may provide 2 constraints in the intrinsic parameters of the camera, and extrinsic parameters can then be recovered. The calibration procedure consists of three main steps: Firstly, the image is rectified by a homography, which makes the projections of vertical lines parallel to u-axis in the rectified image. Secondly, for any vertical scan line in the rectified image, if we consider the scan line is taken by a virtual 1D camera, then we can calibrate the 1D camera. Finally, the intrinsic parameters of the original camera can be determined from the intrinsic parameters of the virtual 1D camera. By evaluating on both simulated and real data we demonstrate that our method is efficient and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: Easyliving: Technologies for intelligent environments, pp. 12–29. Springer (2000)

    Google Scholar 

  2. Bobick, A.F., Intille, S.S., Davis, J.W., Baird, F., Pinhanez, C.S., Campbell, L.W., Ivanov, Y.A., Schütte, A., Wilson, A.: The kidsroom: Perceptually-based interactive and immersive story environment. In: PRESENCE, pp. 367–391 (1999)

    Google Scholar 

  3. Khan, S., Javed, O., Rasheed, Z., Shah, M.: Human tracking in multiple cameras. In: International Conference on Computer Vision, pp. 331–336 (2001)

    Google Scholar 

  4. Svoboda, T., Hug, H., Van Gool, L.: ViRoom - Low Cost Synchronized Multicamera System and Its Self-calibration. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 515–522. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Trivedi, M.M., Mikic, I., Bhonsle, S.K.: Active camera networks and semantic event databases for intelligent environments (2000)

    Google Scholar 

  6. Zhang, Z.: Camera Calibration with One-Dimensional Objects. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 161–174. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Wu, F.C., Hu, Z.Y., Zhu, H.J.: Camera calibration with moving one-dimensional objects. Pattern Recogn. 38, 755–765 (2005)

    Article  Google Scholar 

  8. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

  9. Agrawal, M., Davis, L.S.: Complete camera calibration using spheres: A dual-space approach (2003)

    Google Scholar 

  10. Zhang, H., Zhang, G.: yee Kenneth Wong, K.: Camera calibration with spheres: Linear approaches (2005)

    Google Scholar 

  11. Jiang, G., Tsui, H.-T., Quan, L., Zisserman, A.: Single Axis Geometry by Fitting Conics. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 537–550. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Cheung, G.K.M., Baker, S., Simon, C., Kanade, T.: Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture (2003)

    Google Scholar 

  13. Svoboda, T., Martinec, D., Pajdla, T.: A convenient multicamera self-calibration for virtual environments. Presence: Teleoper. Virtual Environ. 14, 407–422 (2005)

    Article  Google Scholar 

  14. Baker, P.T., Aloimonos, Y.: Calibration of a multicamera network. In: Computer Vision and Pattern Recognition Workshop, vol. 7 (2003)

    Google Scholar 

  15. Lee, L., Romano, R., Stein, G.: Monitoring activities from multiple video streams: Establishing a common coordinate frame. IEEE Trans. Pattern Anal. Mach. Intell. 22, 758–767 (2000)

    Article  Google Scholar 

  16. Sinha, S.N., Pollefeys, M., Mcmillan, L.: Camera network calibration from dynamic silhouettes. In: CVPR, pp. 195–202 (2004)

    Google Scholar 

  17. Wong, K.K.Y., Cipollat, R.: Reconstruction of sculpture from its profiles with unknown camera positions. IEEE Transactions on Image Processing 13, 381–389 (2004)

    Article  Google Scholar 

  18. Ying, X., Zha, H.: Camera pose determination from a single view of parallel lines. In: ICIP, vol. (3), pp. 1056–1059 (2005)

    Google Scholar 

  19. Kukelova, Z., Bujnak, M., Pajdla, T.: Closed-Form Solutions to Minimal Absolute Pose Problems with Known Vertical Direction. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 216–229. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A Minimal Case Solution to the Calibrated Relative Pose Problem for the Case of Two Known Orientation Angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Kang, S.B.: Radial distortion snakes. IEICE Transactions on Information and Systems (2000)

    Google Scholar 

  22. Swaminathan, R., Nayar, S.: Non-metric calibration of wide-angle lenses and polycameras. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 413–419 (1999)

    Google Scholar 

  23. Quan, L., Kanade, T.: Affine structure from line correspondences with uncalibrated affine cameras. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 834–845 (1997)

    Article  Google Scholar 

  24. Xu, L., Oja, E., Kultanen, P.: A new curve detection method: randomized hough transform (rht). Pattern Recogn. Lett. 11, 331–338 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kong, J. et al. (2013). Camera Calibration Using Vertical Lines. In: Park, JI., Kim, J. (eds) Computer Vision - ACCV 2012 Workshops. ACCV 2012. Lecture Notes in Computer Science, vol 7728. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37410-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37410-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37409-8

  • Online ISBN: 978-3-642-37410-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics