Skip to main content

Alpha-Flow for Video Matting

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

  • 3588 Accesses

Abstract

This work addresses the problem of video matting, that is extracting the opacity-layer of a foreground object from a video sequence. We introduce the notion of alpha-flow which corresponds to the flow in the opacity layer. The idea is derived from the process of rotoscoping, where a user-supplied object mask is smoothly interpolated between keyframes while preserving its correspondence with the underlying image. Our key contribution is an algorithm which infers both the opacity masks and the alpha-flow in an efficient and unified manner. We embed our algorithm in an interactive video matting system where the first and last frame of a sequence are given as keyframes, and additional user strokes may be provided in intermediate frames. We show high quality results on various challenging sequences, and give a detailed comparison to competing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rav-Acha, A., Kohli, P., Rother, C., Fitzgibbon, A.: Unwrap mosaics: A new representation for video editing. In: SIGGRAPH, pp. 17:1–17:11 (2008)

    Google Scholar 

  2. Bai, X., Wang, J., Simons, D., Sapiro, G.: Video SnapCut: robust video object cutout using localized classifiers. In: SIGGRAPH, pp. 1–11 (2009)

    Google Scholar 

  3. Wang, J., Cohen, M.F.: Optimized color sampling for robust matting. Computer Vision and Pattern Recognition, 1–8 (2007)

    Google Scholar 

  4. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23, 309–314 (2004)

    Article  Google Scholar 

  5. He, K., Sun, J., Tang, X.: Guided Image Filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Wang, J., Bhat, P., Colburn, R.A., Agrawala, M., Cohen, M.F.: Interactive video cutout. In: SIGGRAPH, pp. 585–594 (2005)

    Google Scholar 

  7. Li, Y., Sun, J., Shum, H.Y.: Video object cut and paste. In: SIGGRAPH, pp. 595–600 (2005)

    Google Scholar 

  8. Bai, X., Sapiro, G.: Geodesic matting: A framework for fast interactive image and video segmentation and matting. IJVC 82, 113–132 (2009)

    Google Scholar 

  9. Ding, Z., Chen, H., Guan, Y., Chen, W., Peng, Q.: GPU accelerated interactive space-time video matting. In: Computer Graphics International (2010)

    Google Scholar 

  10. Tang, Z., Miao, Z., Wan, Y., Zhang, D.: Video matting via opacity propagation. The Visual Computer, 1–15 (2011)

    Google Scholar 

  11. Lee, S.Y., Yoon, J.C., Lee, I.K.: Temporally coherent video matting. Graphical Models 72, 25–33 (2010)

    Article  MathSciNet  Google Scholar 

  12. Chuang, Y.Y., Agarwala, A., Curless, B., Salesin, D.H., Szeliski, R.: Video matting of complex scenes. SIGGRAPH 21, 243–248 (2002)

    Google Scholar 

  13. Apostoloff, N.E., Fitzgibbon, A.W.: Automatic video segmentation using spatiotemporal T-junctions. In: BMVC (2006)

    Google Scholar 

  14. Lezama, J., Alahari, K., Sivic, J., Laptev, I.: Track to the future: Spatio-temporal video segmentation with long-range motion cues. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  15. Sand, P., Teller, S.J.: Particle video: Long-range motion estimation using point trajectories. International Journal of Computer Vision 80, 72–91 (2008)

    Article  Google Scholar 

  16. Chen, J., Paris, S., Wang, J., Cohen, M., Cohen, M., Durand, F.: The video mesh: A data structure for image-based video editing. Artificial Intelligence (2009)

    Google Scholar 

  17. Agarwala, A., Hertzmann, A., Salesin, D.H., Seitz, S.M.: Keyframe-based tracking for rotoscoping and animation. In: SIGGRAPH, pp. 584–591 (2004)

    Google Scholar 

  18. Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label MRF optimization. In: BMVC (2010)

    Google Scholar 

  19. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR, pp. 2432–2439 (2010)

    Google Scholar 

  20. Levin, A., Lischinski, D., Weiss, Y.: A closed form solution to natural image matting. In: IEEE CVPR, vol. 1, pp. 61–68 (2006)

    Google Scholar 

  21. Rhemann, C., Rother, C., Kohli, P., Gelautz, M.: A Spatially Varying PSF-based Prior for Alpha Matting. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  22. Liu, C.: Beyond pixels: Exploring new representations and applications for motion analysis. Doctoral Thesis. Massachusetts Institute of Technology (2009)

    Google Scholar 

  23. Steinbrucker, F., Pock, T., Cremers, D.: Large displacement optical flow computation without warping. In: ICCV, pp. 1609–1614 (2009)

    Google Scholar 

  24. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: A randomized correspondence algorithm for structural image editing. In: SIGGRAPH (2009)

    Google Scholar 

  25. Agrawal, A., Raskar, R., Chellappa, R.: What Is the Range of Surface Reconstructions from a Gradient Field? In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 578–591. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Xiao, J., Cheng, H., Sawhney, H., Rao, C., Isnardi, M.: Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 211–224. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Strecha, C., Fransens, R., Van Gool, L.: A Probabilistic Approach to Large Displacement Optical Flow and Occlusion Detection. In: Comaniciu, D., Mester, R., Kanatani, K., Suter, D. (eds.) SMVP 2004. LNCS, vol. 3247, pp. 71–82. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Sindeev, M., Konushin, A., Rother, C.: Alpha-flow for video matting. Technical Report (2012)

    Google Scholar 

  29. Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph based video segmentation. In: IEEE CVPR (2010)

    Google Scholar 

  30. Bai, X., Wang, J., Simons, D.: Towards Temporally-Coherent Video Matting. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2011. LNCS, vol. 6930, pp. 63–74. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sindeev, M., Konushin, A., Rother, C. (2013). Alpha-Flow for Video Matting. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics