Skip to main content

An Anchor Patch Based Optimization Framework for Reducing Optical Flow Drift in Long Image Sequences

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7726))

Included in the following conference series:

Abstract

Tracking through long image sequences is a fundamental research issue in computer vision. This task relies on estimating correspondences between image pairs over time where error accumulation in tracking can result in drift. In this paper, we propose an optimization framework that utilises a novel Anchor Patch algorithm which significantly reduces overall tracking errors given long sequences containing highly deformable objects. The framework may be applied to any tracking algorithm that calculates dense correspondences between images, e.g. optical flow. We demonstrate the success of our approach by showing significant tracking error reduction using 6 existing optical flow algorithms applied to a range of benchmark ground truth sequences. We also provide quantitative analysis of our approach given synthetic occlusions and image noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeCarlo, D., Metaxas, D.: The integration of optical flow and deformable models with applications to human face shape and motion estimation. In: Computer Vision and Pattern Recognition (CVPR), pp. 231–238. IEEE (1996)

    Google Scholar 

  2. Borshukov, G., Piponi, D., Larsen, O., Lewis, J., Tempelaar-Lietz, C.: Universal capture: image-based facial animation for the matrix reloaded. In: ACM SIGGRAPH 2005 Courses, p. 16. ACM (2005)

    Google Scholar 

  3. Ezzat, T., Geiger, G., Poggio, T.: Trainable videorealistic speech animation. ACM Transactions on Graphics (TOG) 21, 388–398 (2002)

    Article  Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  5. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 500–513 (2011)

    Article  Google Scholar 

  6. Bradley, D., Heidrich, W., Popa, T., Sheffer, A.: High resolution passive facial performance capture. ACM Transactions on Graphics (TOG) 29, 41 (2010)

    Article  Google Scholar 

  7. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R.W., Gross, M.: High-quality passive facial performance capture using anchor frames. ACM Transactions on Graphics (TOG) 30, 75 (2011)

    Article  Google Scholar 

  8. Garg, R., Roussos, A., Agapito, L.: Robust trajectory-space tv-l1 optical flow for non-rigid sequences. Energy Minimazation Methods in Computer Vision and Pattern Recognition, 300–314 (2011)

    Google Scholar 

  9. Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles. In: Computer Vision and Pattern Recognition (CVPR), pp. 2432–2439 (2010)

    Google Scholar 

  10. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for tv-l1 optical flow. Statistical and Geometrical Approaches to Visual Motion Analysis, 23–45 (2009)

    Google Scholar 

  11. Pizarro, D., Bartoli, A.: Feature-based deformable surface detection with self-occlusion reasoning. International Journal of Computer Vision, 1–17 (2012)

    Google Scholar 

  12. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable libraryof computer vision algorithms (2008)

    Google Scholar 

  13. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92, 1–31 (2011)

    Article  Google Scholar 

  14. Drulea, M., Nedevschi, S.: Total variation regularization of local-global optical flow. In: Intelligent Transportation Systems (ITSC), pp. 318–323. IEEE (2011)

    Google Scholar 

  15. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  16. Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63, 75–104 (1996)

    Article  Google Scholar 

  17. White, R., Crane, K., Forsyth, D.A.: Capturing and animating occluded cloth. ACM Transactions on Graphics (TOG) 26, 34 (2007)

    Article  Google Scholar 

  18. Salzmann, M., Hartley, R., Fua, P.: Convex optimization for deformable surface 3-d tracking. In: IEEE International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W., Cosker, D., Brown, M. (2013). An Anchor Patch Based Optimization Framework for Reducing Optical Flow Drift in Long Image Sequences. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37431-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37431-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37430-2

  • Online ISBN: 978-3-642-37431-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics