Skip to main content

Globally Optimal Consensus Set Maximization through Rotation Search

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7725))

Included in the following conference series:

Abstract

A popular approach to detect outliers in a data set is to find the largest consensus set, that is to say maximizing the number of inliers and estimating the underlying model. RANSAC is the most widely used method for this aim but is non-deterministic and does not guarantee to return the optimal solution. In this paper, we consider a rotation model and we present a new approach that performs consensus set maximization in a mathematically guaranteed globally optimal way. We solve the problem by a branch-and-bound framework associated with a rotation space search. Our mathematical formulation can be applied for various computer vision tasks such as panoramic image stitching, 3D registration with a rotating range sensor and line clustering and vanishing point estimation. Experimental results with synthetic and real data sets have successfully confirmed the validity of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)

    Google Scholar 

  2. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM (1981)

    Google Scholar 

  3. Li, H.: Consensus set maximization with guaranteed global optimality for robust geometry estimation. In: Proc. International Conference on Computer Vision, pp. 1074–1080 (2009)

    Google Scholar 

  4. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: Proc. International Conference on Computer Vision, pp. 72–79 (2009)

    Google Scholar 

  5. Brown, M., Lowe, D.: Automatic panoramic image stitching using invariant features. International Journal of Computer Vision 74, 59–73 (2007)

    Article  Google Scholar 

  6. Bazin, J.C., Demonceaux, C., Vasseur, P., Kweon, I.: Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment. The International Journal of Robotics Research 31, 63–81 (2012)

    Article  Google Scholar 

  7. Torr, P., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. Computer Vision and Image Understanding (2000)

    Google Scholar 

  8. Nistér, D.: Preemptive RANSAC for live structure and motion estimation. In: Proc. International Conference on Computer Vision., vol. 1, p. 199 (2003)

    Google Scholar 

  9. Raguram, R., Frahm, J.-M., Pollefeys, M.: A Comparative Analysis of RANSAC Techniques Leading to Adaptive Real-Time Random Sample Consensus. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 500–513. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Chum, O., Matas, J.: Optimal randomized RANSAC. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 1472–1482 (2008)

    Article  Google Scholar 

  11. McCormick, G.: Computability of global solutions to factorable nonconvex programs: part I - convex underestimating problems. Mathematical Programming 10, 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Olsson, C., Enqvist, O., Kahl, F.: A polynomial-time bound for matching and registration with outliers. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  13. Horst, R., Tuy, H.: Global optimization: deterministic approaches. Springer (2006)

    Google Scholar 

  14. Amberg, B., Vetter, T.: Optimal landmark detection using shape models and branch and bound. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 455–462 (2011)

    Google Scholar 

  15. Sun, M., Telaprolu, M., Lee, H., Savarese, S.: An efficient branch-and-bound algorithm for optimal human pose estimation. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  16. Lehmann, A., Leibe, B., Gool, L.V.: Fast PRISM: Branch and bound Hough transform for object class detection. International Journal of Computer Vision 94 (2011)

    Google Scholar 

  17. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient subwindow search: A branch and bound framework for object localization. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 2129–2142 (2009)

    Article  Google Scholar 

  18. Thakoor, N., Gao, J., Devarajan, V.: Multibody structure-and-motion segmentation by branch-and-bound model selection. IEEE Transactions on Image Processing 19 (2010)

    Google Scholar 

  19. Yu, C., Seo, Y., Lee, S.W.: Global optimization for estimating a BRDF with multiple specular lobes. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2010)

    Google Scholar 

  20. Hartley, R., Kahl, F.: Global optimization through rotation space search. International Journal of Computer Vision 82, 64–79 (2009)

    Article  Google Scholar 

  21. Darom, T., Keller, Y.: Scale invariant features for 3D mesh models. IEEE Transactions on Image Processing 21, 2758–2769 (2012)

    Article  MathSciNet  Google Scholar 

  22. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America. A 4, 629–642 (1987)

    Article  Google Scholar 

  23. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)

    Google Scholar 

  24. Forsyth, D., Ponce, J.: Computer vision: a modern approach (2002)

    Google Scholar 

  25. Bazin, J.C., Seo, Y., Demonceaux, C., Vasseur, P., Ikeuchi, K., Kweon, I., Pollefeys, M.: Globally optimal line clustering and vanishing point estimation in Manhattan world. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  26. Moor, R.: Interval Analysis (1966)

    Google Scholar 

  27. Coughlan, J., Yuille, A.: The Manhattan world assumption: Regularities in scene statistics which enable bayesian inference. In: Conference on Neural Information Processing Systems (2000)

    Google Scholar 

  28. Denis, P., Elder, J.H., Estrada, F.J.: Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazin, JC., Seo, Y., Pollefeys, M. (2013). Globally Optimal Consensus Set Maximization through Rotation Search. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37444-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37443-2

  • Online ISBN: 978-3-642-37444-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics