Abstract
Feature extraction plays an important role in face recognition. Based on local binary patterns (LBP), we propose a novel face representation method which obtains histograms of semantic pixel sets based LBP (spsLBP) with a robust code voting (rcv). By clustering according the semantic pixel relations before the histogram estimation, the spsLBP makes better use of the spatial information over the original LBP. In this paper, we use a simple rule to use the semantic information. We cluster by the pixel intensity values, which is also invariant to monotonic grayscale changes, and it is in particular very useful when there are occlusions and expression variations on face images. Besides, the proposed representation adopts a new code voting strategy for LBP histogram computation, which makes it more robust. The proposed method is evaluated on three widely used face recognition databases: AR, FERET and LFW. Experimental results show that the proposed method can outperform the original uniform LBP and its extensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35, 399–458 (2003)
Jain, A.K., Li, S.Z.: Handbook of Face Recognition. Springer-Verlag New York, Inc. (2005)
Heisele, B., Ho, P., Wu, J., Poggio, T.: Face recognition: component-based versus global approaches. Computer Vision and Image Understanding 91, 6–21 (2003)
Lei, Z., Liao, S., Pietikäinen, M., Li, S.Z.: Face Recognition by Exploring Information Jointly in Space, Scale and Orientation. IEEE Transactions on Image Processing 20, 247–256 (2011)
Serrano, Á., de Diego, I.M., Conde, C., Cabello, E.: Recent advances in face biometrics with Gabor wavelets: A review. Pattern Recognition Letters 31, 372–381 (2010)
Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns. Springer-Verlag London, Ltd. (2011)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Guo, Z., Zhang, L., Zhang, D.: A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Transactions on Image Processing 19, 1657–1663 (2010)
Liao, S., Law, M., Chung, A.: Dominant Local Binary Patterns for Texture Classification. IEEE Transactions on Image Processing 18, 1107–1118 (2009)
Jin, H., Liu, Q., Lu, H., Tong, X.: Face Detection Using Improved LBP under Bayesian Framework. In: International Conference on Image and Graphics (ICIG), pp. 306–309 (2004)
Liao, S., Chung, A.C.S.: Face Recognition by Using Elongated Local Binary Patterns with Average Maximum Distance Gradient Magnitude. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 672–679. Springer, Heidelberg (2007)
Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning Multi-scale Block Local Binary Patterns for Face Recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007)
Guo, Z., Zhang, L., Zhang, D., Mou, X.: Hierarchical multiscale LBP for face and palmprint recognition. In: International Conference on Image Processing (ICIP), pp. 4521–4524 (2010)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing 19, 1635–1650 (2010)
Marcel, S., Rodriguez, Y., Heusch, G.: On the Recent Use of Local Binary Patterns for Face Authentication. Technical Report 06-34, Idiap (2006)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29, 51–59 (1996)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intellengence 24, 971–987 (2002)
Huang, X., Li, S.Z., Wang, Y.: Shape Localization Based on Statistical Method Using Extended Local Binary Pattern. In: International Conference on Image and Graphics (ICIG), pp. 184–187 (2004)
Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning Multi-scale Block Local Binary Patterns for Face Recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007)
Fan, B., Wu, F., Hu, Z.: Aggregating gradient distributions into intensity orders: A novel local image descriptor. In: Internation Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2377–2384 (2011)
Wang, Z., Fan, B., Wu, F.: Local Intensity Order Pattern for feature description. In: International Conference on Computer Vision (ICCV), pp. 603–610 (2011)
Phillips, J.P., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)
Martínez, A., Benavente, R.: The AR Face Database. Technical Report #24, CVC (1998)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)
Wolf, L., Hassner, T., Taigman, Y.: Similarity Scores Based on Background Samples. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 88–97. Springer, Heidelberg (2010)
Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A Novel Non-Statistical Model for Face Representation and Recognition. In: International Conference on Computer Vision (ICCV), pp. 786–791 (2005)
Pinto, N., DiCarlo, J.J., Cox, D.D.: Establishing Good Benchmarks and Baselines for Face Recognition. In: Real-Life Images workshop at the European Conference on Computer Vision, ECCVW (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chai, Z., Mendez-Vazquez, H., He, R., Sun, Z., Tan, T. (2013). Semantic Pixel Sets Based Local Binary Patterns for Face Recognition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37444-9_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-37444-9_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37443-2
Online ISBN: 978-3-642-37444-9
eBook Packages: Computer ScienceComputer Science (R0)