Abstract
The objective of this paper is to increase both spacial resolution and depth precision of a depth map. Our work aims to produce a super resolution depth map with quality as well as precision. This paper is motivated by the fact that errors of depth measurements from the sensor are inherent. By combining prior geometry of the scene, we propose a Bayesian approach to the uncertainty-based depth map super resolution. In particular, uncertainty of depth measurements is modeled in terms of kernel estimation and is used to formulate the likelihood. In this paper, we incorporate a gauss kernel on depth direction as well as an anisotropic spatial-color kernel. We further utilize geometric assumptions of the scene, namely the piece-wise planar assumption, to model the prior. Experiments on different datasets demonstrate effectiveness and precision of our algorithm compared with the state-of-art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liu, C., Sun, D.: A bayesian approach to adaptive video super resolution. In: CVPR, pp. 209–216 (2011)
Kil, Y., Mederos, B., Amenta, N.: Laser scanner super-resolution. In: PBG, pp. 9–16 (2006)
Schuon, S., Theobalt, C., Davis, J., Thrun, S.: High-quality scanning using time-of-flight depth superresolution. In: CVPRW (2008)
Schuon, S., Theobalt, C., Davis, J., Thrun, S.: Lidarboost: Depth superresolution for tof 3d shape scanning. In: CVPR (2009)
Li, J., Li, E., Chen, Y., Xu, L., Zhang, Y.: Bundled depth-map merging for multi-view stereo. In: CVPR, pp. 2769–2776. IEEE (2010)
Campbell, N.D.F., Vogiatzis, G., Hernández, C., Cipolla, R.: Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 766–779. Springer, Heidelberg (2008)
Diebel, J., Thrun, S.: An application of markov random fields to range sensing. NIPS 18, 291 (2006)
Yang, Q., Yang, R., Davis, J., Nister, D.: Spatial-depth super resolution for range images. In: CVPR (2007)
Park, J., Kim, H., Tai, Y., Brown, M., Kweon, I.: High quality depth map upsampling for 3d-tof cameras. In: ICCV (2011)
Kopf, J., Cohen, M., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. TOG 26, 96 (2007)
Chan, D., Buisman, H., Theobalt, C., Thrun, S.: A noise-aware filter for real-time depth upsampling. In: ECCVW (2008)
Zhu, J., Wang, L., Yang, R., Davis, J.: Fusion of time-of-flight depth and stereo for high accuracy depth maps. In: CVPR (2008)
Huhle, B., Schairer, T., Jenke, P., Straßer, W.: Fusion of range and color images for denoising and resolution enhancement with a non-local filter. CVIU 114, 1336–1345 (2010)
Favaro, P.: Recovering thin structures via nonlocal-means regularization with application to depth from defocus. In: CVPR (2010)
Zhang, Z.: A flexible new technique for camera calibration. PAMI 22, 1330–1334 (2000)
Sinha, S., Steedly, D., Szeliski, R.: Piecewise planar stereo for image-based rendering. In: ICCV, pp. 1881–1888 (2009)
Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Reconstructing building interiors from images. In: ICCV, pp. 80–87. IEEE (2009)
Micusik, B., Kosecka, J.: Piecewise planar city 3d modeling from street view panoramic sequences. In: CVPR, pp. 2906–2912. IEEE (2009)
Gallup, D., Frahm, J., Pollefeys, M.: Piecewise planar and non-planar stereo for urban scene reconstruction. In: CVPR, pp. 1418–1425. IEEE (2010)
Torr, P., Zisserman, A.: Mlesac: A new robust estimator with application to estimating image geometry. CVIU 78, 138–156 (2000)
Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: ICRA, pp. 1817–1824 (2011)
He, K., Sun, J., Tang, X.: Guided Image Filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, J., Zeng, G., Gan, R., Zha, H., Wang, L. (2013). A Bayesian Approach to Uncertainty-Based Depth Map Super Resolution. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7727. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37447-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-37447-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37446-3
Online ISBN: 978-3-642-37447-0
eBook Packages: Computer ScienceComputer Science (R0)